

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Introduzione alle Tecniche di Laboratorio

1920-2-E1301Q079

Aims

The aim of the course is to provide students with a basic knowledge of the most important techniques in use in the biochemical laboratory. Students are encouraged to develop a critical approach in the choice of different strategies in protein purification and enzyme activity assays.

1. Knowledge and understanding - students will learn the theory underlying the most common biochemical techniques, as well as the basis of the most important molecular and cell biology techniques. A particular emphasis will be set on the general principles underlying recombinant protein production, purification and characterization 2. Applying knowledge and understanding - at the end of the course students will be able to apply the knowledge acquired to the choice of the different experimental approaches in protein purification and characterization; this knowledge will also be essential in other courses, particularly in the "Integrated biological laboratory" course

3. Making judgements – at the end of the course students will be able to devise a protein purification protocol and to choose among the different characterization methods

4. Communication skills - students will acquire a specific scientific language and the ability to orally describe the topics discussed in the course

5. Learning skills - this course will provide students with the ability to understand and critically evaluate the experimental methods described in the scientific literature.

Contents

Cell disruption methods; centrifugation; UV-VIS spectroscopy and spectrofluorimetry; protein concentration and enzyme activity assays; chromatographies; strategies in protein purification; electrophoresis; production of recombinant proteins; immunochemical techniques; radioisotopic techniques; manometry; an overview of methods for primary structure analysis.

Detailed program

Cell disruption methods – Buffers and proteins stability; soft, medium and hard methods for cells disruption; salting out; dialysis

Centrifugation – general principles; differential centrifugation; density gradient centrifugation; elutriation UV-VIS spectroscopy and spectrofluorimetry

Protein concentration and enzyme activity assay – Bradford and BCA assays; experimental setting for enzyme activity assays

Chromatography – general principles; gel filtration; ion-exchange chromatography; hydrophobic chromatography; chromatofocusing; reverse phase chromatography; affinity chromatography

Strategies in protein purification

Electrophoresis – general principles; SDS-PAGE; native electrophoresis; isoelectrofocusing; 2D electrophoresis Production of recombinant proteins – vectors for the expression of tagged recombinant proteins; purification of tagged proteins and tag removal

Immunochemical techniques – immunoprecipitation; western blotting; ELISA; RIA; immunocytochemistry Radioisotopic techniques – radioactivity; radioisotopes in use in the biochemical laboratory; Geiger-Muller counter; scintillation counter; autoradiography

Manometry - Clark and Rank electrodes

Methods for proteins primary structure analysis - aminoacid analysis; Edman degradation; mass spectrometry

Prerequisites

A basic knowledge of general and organic chemistry, physics and biochemistry is essential. The essential physicochemical principles and biochemistry topics will be reviewed before addressing each method.

Teaching form

Front lectures based on powerpoint presentations; videos; active learning (discussion of experimental data)

Textbook and teaching resource

Suggested textbook: Wilson&Walker "Biochimica e Biologia molecolare" Ed. Cortina (2019);Bonaccorsi, Contestabile, Di Salvo "Metodologie biochimiche" CEA slides are available at Moodle site

Semester

Second semester

Assessment method

Oral examination: The oral examination is aimed at assessing the student's ability to illustrate coherently the course main topics and to discuss experimental data. It consists of 3-4 general questions. No in itinere evaluations are scheduled.

Office hours

upon request (paola.fusi@unimib.it)