

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Chimica Fisica dei Materiali

1920-2-E2701Q040

Obiettivi

Obbiettivi fondamentali:

- 1) Presentare i fondamenti termodinamici del comportamento delle miscele binarie;
- 2) Presentare i concetti fondamentali legati alla simmetria nei cristalli;
- 3) Illustrare le conseguenze della presenza dei difetti nei solidi cristallini;

Conoscenze e capacità di comprensione. Al termine del corso lo studente conosce:

- i fondamenti termodinamici del comportamento delle miscele binarie, dalle soluzioni ideali a quelle regolari;
- i concetti fondamentali fisico/matematici legati alla simmetria nei cristalli;
- i principi fisici delle tecniche di diffrazione, in particolare riguardo l'analisi ai raggi X per la determinazione della struttura;
- le principali strutture compatte;
- le conseguenze della presenza dei difetti nei solidi;
- l'effetto dei difetti sulle proprietà funzionali dei materiali.

Conoscenze e capacità di comprensione applicate. Al termine del corso lo studente è in grado di:

- leggere e interpretare diagrammi di fase binari temperatura/composizione in presenza di fasi solide e liquide;
- risolvere semplici problemi di geometria di stato solido;
- risolvere semplici problemi di strutturistica in stato solido;
- classificare i difetti in base alla loro caratteristiche;

Autonomia di giudizio. Al termine del corso, lo studente è in grado di:

- determinare le condizioni termodinamiche di equilibrio per la coesistenza di varie fasi;
- scegliere le condizioni di analisi più appropriate per risolvere la struttura di sistemi cristallini;
- correlare le proprietà strutturali dei materiali con quelle funzionali.

Abilità comunicative. Al termine del corso lo studente è in grado di:

- spiegare le varie zone dei diagrammi di fase solido/liquido in miscele binarie;

- commentare i risultati di semplici problemi di strutturistica;
- illustrare i concetti fondamentali della diffrazione dei cristalli:
- descrivere l'effetto della presenza dei difetti nei sistemi cristallini.

Capacità di apprendere. Al termine del corso lo studente è in grado di:

- comprendere qualsiasi diagramma di fase binario temperatura/composizione;
- leggere le tabelle internazionali di cristallografia comprendendone le informazioni più significative;
- interpretare alcune semplici proprietà funzionali in base alla struttura dei solidi.

Contenuti sintetici

Termodinamica: miscele a più componementi: dalle soluzioni ideali ai diagrammi di fase complessi

Cristallografia: simmetrie, sistemi cristallini e gruppi spaziali. Esercizi sulla geometria cristallina

Diffrazione di raggi X: la legge di Bragg e il fattore di struttura. Esercizi sul calcolo del fattore di struttura

Difetti nei solidi

Programma esteso

COMPLEMENTI DI TERMODINAMICA

Le proprietà delle miscele semplici, soluzioni ideali e il concetto di attività. legge di Rault e legge di Henry. Principi di equilibrio termodinamico e regola delle fasi. Classificazione dei diagrammi di fase. Soluzioni regolari e diagrammi di fase binari di complessità varia.

STRUTTURA CRISTALLINA DEI SOLIDI IDEALI E METODI SPERIMENTALI DI DIFFRAZIONE

Solidi cristallini: struttura atomica e simmetria traslazionale. Cella elementare. Reticolo diretto e reticolo reciproco e loro proprietà geometriche. Operazioni ed elementi di simmetria cenni di teoria dei gruppi e gruppi di simmetria puntuali. Reticoli di Bravais. Gruppi di simmetria spaziali. Diffrazione di raggi X, elettroni e neutroni da parte dei cristalli. Legge di Von Laue e legge di Bragg. Sfera di Ewald. Fattore di diffusione atomico e fattore di struttura. Densità elettronica. Effetto del moto termico degli atomi. Simmetria strutturale ed estinzioni sistematiche. Cenni ai metodi sperimentali di diffrazione (metodo delle polveri). Tipi strutturali più importanti derivati dall'esagonale compatto e dal cubico compatto.

DIFETTI PUNTUALI ED ESTESI NEI SOLIDI

Natura dei difetti di punto (vacanze, interstiziali, coppie di Frenkel e coppie di Schottky) e termodinamica del loro processo di formazione. Mobilità ionica e conducibilità ionica nei solidi. Difetti estesi: difetti di sequenza, dislocazioni, bordi di grano. Proprietà principali delle dislocazioni.

Prerequisiti

Sono richieste conoscenze matematiche, fisiche e chimico/fisiche.

Conoscenze matematiche: algebra vettoriale e matriciale, operazione con i numeri complessi.

Conoscenze fisiche: principi di elettromagnetismo, equazioni che descrivono fenomeni di propagazione di onde.

Termodinamica di base: principi della tarmodinamica, diagrammi di fase a un componenze, energia libera di Gibbs di miscelamento (caso dei gas perfetti).

Modalità didattica

Il corso prevede un ciclo di lezioni frontali (7 CFU) intervallato da esercitazioni in classe (1 CFU) in ncui il docente illustra gli strumenti necessari per interpretare ie risolvere i problemi.

Materiale didattico

Dispense fornite dai docenti

Atkins de Paula "Chimica Fisica", 5a edizione (capitolo 5)

Immirzi Tedesco "La diffrazione nei cristalli", libreriauniversitaria.it (capitoli 1-7, 11, 15)

Periodo di erogazione dell'insegnamento

primo semestre

Modalità di verifica del profitto e valutazione

L'insegnamento prevede un esame scritto e una verifica dell'apprendimento orale. Il superamento della prova scritta (voto >18/30) è propedeutico all'ammissione alla prova orale. L'esame scritto deve essere superato nella stessa sessione in cui si sostiene l'esame orale. Sono oreviste due verifiche scritte durante il ciclo di lezioni, una

intermedia a metà corso e una alla fine. Chi supera positivamente le due verifiche (voto > 18/30 in entrambe) è esentato dalla prova scritta per la corrispondente sessione.

L'esame scritto consiste in:

- comprensione dei diagrammi di fase,
- risoluzione di problemi di simmetria puntuale e/o spaziale,
- determinazioe di parametri geometrici (distanze e angoli di legame) in stato solido,
- utilizzo della legge di Bragg e detrminazione di fattori di struttura.

L'esame orale mira a verificare le conoscenze acquisite riguardo

- i principi dell'equlibrio termodinamico dei sistemi a due componenti,
- i principi fisici delle tecniche di diffrazione, con particolare riguardo alle tecniche legate all'analisi con raggi X,
- il ruolo e gli effetti della presenza dei difetti nei solidi.

Orario di ricevimento

su appuntamento