

SYLLABUS DEL CORSO

Sistemi Embedded

1920-3-E3101Q124

Aims

 Understanding the major issues of real-time embedded systems. Ability to develop simple real-time embedded
applications on micro-controllers in assembly and C.

Contents

 Embedded systems: features and requirements. The structure of embedded systems: micro-controllers, DSP,
FPGA, memories and their organization, communication systems. Peripherals, sensors and actuators. Real-time
scheduling theory. Software architectures and libraries for real-time, fail-safe and safety-critical programming. Real-
time operating systems. Laboratory activity with micro-controller programming in assembly and C.

Detailed program

1. Embedded systems: features and requirements
1. General features of embedded systems; application domains; market value and diffusion.
2. Basic requirements: timing, reliability, efficiency.
3. Design choices vs requirements.

2. The structure of embedded systems
1. Small recap of digital and analog electronics.
2. Scale levels: IC, PCB, network.
3. Processing units: CPU, microcontrollers, DSP, GPU, ASIC. Programmable logic: FPGA.
4. Memories: SRAM and DRAM, non-volatile memories; interactions between processor and memory:

Von Neumann and Harvard architectures, memory hierarchies.
5. Communication systems: GPIO, Pulse Width Modulation, RS-232, USB, I2C, SPI, CAN bus, JTAG.
6. Systems with a high degree of integration: SoC e NoC.
7. Examples of micro-controllers.

3. Peripherals, sensors and actuators

1. Timers.
2. DMA.
3. Fundamentals of sampling theory: Nyquist theorem, aliasing, quantization noise; Comparators and

A/D and D/A converters.
4. Models of sensors and actuators: Affine models, saturation, harmonic distortion, dynamic range.
5. Sensors: Accelerometers and gyroscopes.
6. Actuators: Linear solenoids and DC motors.

4. Real-time scheduling theory
1. Basic definitions: periodic, aperiodic e sporadic tasks, utilization, valid and feasible schedules,

optimality.
2. Interrupt models: interrupt latency calculation.
3. Cyclic schedule.
4. Static priority scheduling: rate-monotonic and deadline-monotonic schedule, schedulability analysis.
5. Dynamic priority scheduling: earliest-deadline-first and least-slack-time-first schedule.
6. Scheduling for aperiodic and sporadic jobs.
7. Blocking time analysis.
8. Critical sections, scheduling anomalies (priority inversion and deadlock), priority inheritance and

priority ceiling protocols.
5. Software architectures and libraries

1. Main architectures: Round-robin, round-robin with interrupts, function-queue-scheduling.
2. (hints) POSIX.4, Ada Real-Time and Ravenscar, Real-Time and High-Integrity Java.
3. (hints) real-time operating systems.

6. Laboratory activity on micro-controllers programming.
1. Software development toolchain and IDE.
2. Assembly programming and development of some basic programs.
3. C programming.
4. Team project development.

Prerequisites

1. Basic knowledge of computer architecture and assembly programming.
2. Good programming skills. Basic skills in C programming.
3. Basic knowledge of operating systems and concurrent programming.
4. Software design principles with UML.

Teaching form

classes;
practices in laboratory, with development of projects in small groups.

Textbook and teaching resource

E. A. Lee, S.A. Seshia. Introduction to Embedded Systems: A Cyber-Physical Approach. Second Edition,
MIT Press, 2017.
D. E. Simon. An Embedded Software Primer. Addison Wesley, 1999.
J. W. S. Liu. Real-Time Systems. Prentice-Hall, 2000.
C. Brandolese, W. Fornaciari. Sistemi Embedded: Sviluppo Hardware e Software per Sistemi Dedicati.
Pearson, 2007.
Handouts, on the course webpage.

Semester

Second semester

Assessment method

Written examination with exercises and/or open questions;
written report on the laboratory activity;
oral examination about the laboratory report.

Office hours

Send email for an appointment.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

