

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Sistemi Informativi Territoriali

1920-2-E3201Q090-E3201Q087M

Aims

At the end of this teaching the student will have to:

- know the basic principles of SIT
- know the main SIT data models and their basic applications

Ability to apply knowledge and understanding

- be able to create a spatial database

At the end of the course, the student will be able to make a judgment:

- on the correct application of the knowledge acquired during the course for the management of spatial data
- on the quality and accuracy of spatial data;

At the end of the course the student must know:

- organising and managing spatial data
- be able to create an operational flow for the acquisition, management, processing and representation of spatial data.

Translated with www.DeepL.com/Translator

Contents

The course regards the principles of Geomatic and in particular application of Geographic Information Systems to environmental geology

Detailed program

General Objectives

The course aims to provide students with the main knowledge base and methodology underlying the GIS databases. Jointly presenting the main fields of application in environmental and land.

Contents of lectures

Definition of SIT, illustrations of the application in the fields of environmental and land. Elements of basic cartography; characterization of geographic information. Definition of spatial data models. Mode of representation of spatial data through computer systems. Hardware and software architecture and presentation of the main features of a GIS. Definition of database, model database, relationships between databases and GIS. Method of gathering data, creating spatial data base. Classification and main applications of the analytical capabilities of a GIS and GIS mapping ratio, mode of production and representation of thematic maps. Basic concepts and definition of data quality, metadata definition and functionality.

Contents of the workshops / tutorials with practical exercises using industry-leading commercial software applications with on case studies.

Prerequisites

Physical geography

Teaching form

Lessons, 4 credits

- Laboratory experiences, 2 credits

Textbook and teaching resource Semester first **Assessment method** Practical test on laboratory activities Office hours By appointment