

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Mathematical Physics

1920-3-E3501Q059

Aims

Learning the methods for the solution of partial differential equations of Mathematical Physics.

Contents

Introduction to classical partial differential equations of mathematical physics and to the related models: Laplace equation, heat equation and wave equation. Solution methods.

Detailed program

- Introduction to partial differential equations:
 - · Maxwell equations, transport equation and Euler equations
- Transport equation
 - · characteristics and solution of the initial value problem
- Wave equation
 - Physical models (D'Alembert e Lagrange)
 - o Characteristics and casual cone
 - · Dependence on the space dimensions: Huygens principle and Kirchhoff solution
 - Lorentz invariance
 - · Effects of sources and boundaries (Neumann e Dirichlet)
 - Well-posedness
- Heat equation (Diffusion equation)

- Physical models (Fick law and probabilistic derivation à la Einstein)
- Self-similar solutions
- · Fundamental solution and solution of the initial value problem
- Weak maximum principle
- · Effects of sources and boundaries (Neumann e Dirichlet)
- Well-posedness
- Comparison between wave and heat equation. Dispersion relation.
 - Hints about the Schroedinger equation
- Laplace equation
 - Radial solutions
 - · First and second Green identities
 - Mean property for harmonic functions
 - · Strong maximum principle for harmonic functions
 - Dirichlet principle
 - · Neumann boundary condition (compatibility conditions) and Dirichlet boundary conditions
 - · Poisson equation: representation formula and general solution
 - Green functions
 - Method of images
- Distributions
 - Definition and main properties
 - o Dirac delta and Green functions
 - Fourier transform method for computation of propagators
 - Weak solutions
- Burgers-Hopf equation
 - Characteristics and initial value problem.
 - · Shocks and their regularization.

Prerequisites

Elements of classical Analysis (I & II). Elements of finite dimensional Euclidean geometry. Elements of Physics (I & II)

Teaching form

Lectures and Exercises.

Textbook and teaching resource

Textbook:

W. Strauss Partial differential equations, Wiley&Sons

S.Salsa, Partial differential equations in action, Springer
L.C. Evans, Partial differential equations, AMS
G. B. Whitham, Linear and nonlinear waves, Wiley&Sons
Semester
2 nd semester
Assessment method
Oral exam: solution of exercises, statements and proofs of theorems, relevant examples and physics derivation of equations, solutions of exercises proposed in class.
Five exam sessions (January-February, June, July, September).

Suggested readings:

Office hours

By appointment.