

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Introduzione alle Serie Storiche M

2021-1-F8204B012

Learning objectives

The main aims of the course are two. The first one is to provide the students with a solid theoretical background in time series analysis. The second aim is to enable students to apply time series analysis to real economic datasets, using econometrics software packages.

Contents

- 1. Overview
- 2. Stochastic processes
- 3. Linear projection and Wold's decomposition
- 4. Stationary Time Series Models
- 5. Nonstationary Time Series Models
- 6. Box-Jenkins approach to model identification
- 7. Seasonal Time Series Models
- 8. Maximum likelihood estimation
- 9. Diagnostic Checking and Model Selection

- 10. Forecasting ARMA models
- 11. Unit root tests

Detailed program

- 1. Overview
- 2. Stochastic processes
- 3. Stationarity
- 4. The Autocovariance, Autocorrelation and Partial Autocorrelation Function
- 5. White Noise Processes
- 6. Sample Mean, Autocovariances, and Autocorrelations
- 7. Ergodicity
- 8. Linear projection and Wold's decomposition
- 9. Autoregressive Processes, AR(1), AR(2), AR(p)
- 10. Moving Average Processes, MA(1), MA(2), MA(q)
- 11. The Dual Relationship Between AR(p) and MA(q) Processes
- 12. Autoregressive Moving Average ARMA(p, q) Processes, ARMA(1, 1) and ARMA(p,q)
- 13. a. Nonstationarity in the Mean. Deterministic and Stochastic Trend Models
- 14. Autoregressive Integrated Moving Average (ARIMA) Models
- 15. Nonstationarity in the Variance and the Autocovariance. Variance Stabilizing Transformations
- 16. Box-Jenkins approach to model identification
- 17. Seasonal ARIMA Models
- 18. Condition and unconditional Maximum likelihood estimation
- 19. Diagnostic Checking and Model Selection
- 20. Residual analysis. Ljung-Box test
- 21. Forecasting ARMA models
- 22. Linear projection and optimal forecast
- 23. 12 Unit root tests

Prerequisites

Knowledge of the topics of descriptive and inferential Statistics and Multivariate Statistical Analysis is recommended

Teaching methods

On line lessons and exercises with software Gretl

Assessment methods

The exam consists of an oral test, carried out via the webex platform aimed at verifying the mastery of the subject by the student, demonstrated by illustrating in a synthetic but exhaustive way the topics proposed in the questions.

Textbooks and Reading Materials

HAMILTON, James Douglas. Time series analysis. Princeton: Princeton university press,.

Slides provided by the teacher and published on e-learning site

Semester

First semester

Teaching language

Italian