

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Advanced Machine Learning

2021-2-F1801Q151

Aims

This machine learning advanced course is aimed especially for students who are already familiar with the basics of machine learning and wish to strengthen their knowledge and explore important advanced topics in order to posses in-depth and wide range capabilities at this so important field.

The course will cover some of the most important advanced topics in machine learning such deep learning and reinforcement learning, with their underlying theory but also a focus on modeling and practical implementation.

These advanced techniques will be applied to a number of applications, including: image recognition, natural language processing, recommendation systems.

Contents

Introduction to Deep Learning

Optimization techniques for training deep models

Convolutional Neural Networks

Unsupervised representation learning

Deep Learning for data sequences

Reinforcement learning

Detailed program

Training Deep Networks:
Objective functions
Activation Functions
Regularization
Gradient-based optimization
Focus on Deep Networks:
Autoencoders
Convolutional Neural Networks
Recurrent and Recursive Networks
Practical Methodology:
Performance Metrics and baseline models
Selecting hyper-parameters
Reinforcement Laerning
Prerequisites
Basic Machine Learning techniques
Teaching form

During the COVD19 emergency period the course will be provided through (asynchronous) video lectures and some (synchronous) videoconference lectures and, if possible, some face-to-face lectures.

The course includes a part of theoretical lessons that will be held in the classroom and a part of exercises that will be held in the laboratory and / or classroom and which will require the use of your PC (or the one available at the University's computer labs).

The practical implementation of case studies will require the basic knowledge of R and Python programming languages.

The course will be in English.

Textbook and teaching resource

lan Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016. http://www.deeplearningbook.org

Rasmussen, Gaussian Processes for Machine Learning, the MIT press 2006.

Francesco Archetti, Antonio Candelieri, Optimization and Data Science, SpringerBriefs, 2019

Further resource material will be made available on the e-learning platform.

Semester

First semester

Assessment method

During the COVI19 Emergency period exams will be held online.

There are two mutually exclusive exam modalities

1. Assignments [0-8 pt] + written test [0-10 pt____

- _____
- •

Written exam [0-15		nt Study [0-15pt]		
•accord	ing to the following cr	riteria:		
office hours				
y appointment				