

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Topics in Geometry and Topology

2122-1-F4001Q083

Obiettivi

L'obiettivo del corso è di affrontare alcuni argomenti classici nella topologia algebrica dei complessi simpliciali, introducendo teorie di omologia, coomologia e alcuni aspetti della teoria di omotopia, con alcune applicazioni recenti.

In particolare, gli obiettivi formativi descritti nei termini dei **Descrittori di Dublino**, saranno:

al termine dell'insegnamento ci si aspetta che gli studenti abbiano dimostrato

- 1. Conoscenza e capacità di comprensione (**knowledge and understanding**): conoscenze e capacità di comprensione che estendono e/o rafforzano quelle in geometria e topologia di base e consentono di elaborare e/o applicare idee originali, spesso in un contesto di ricerca;
- Conoscenza e capacità di comprensione applicate (applying knowledge and understanding): siano
 capaci di applicare le loro conoscenze, capacità di comprensione e abilità nel risolvere problemi a
 tematiche nuove o non familiari, inserite in contesti più ampi (o interdisciplinari) connessi al settore della
 geometria e topologi;
- 3. Autonomia di giudizio (**making judgements**): abbiano la capacità di integrare le conoscenze in geometria e topologia elencate sopra e gestire la complessità, nonché di formulare giudizi sulla base di informazioni limitate o incomplete;
- 4. Abilità comunicative (**communication skills**): sappiano comunicare in modo chiaro e privo di ambiguità le loro conclusioni, nonché le conoscenze e la ratio ad esse sottese, a interlocutori specialisti e non specialisti;
- 5. Capacità di apprendere (**learning skills**): abbiano sviluppato quelle capacità di apprendimento che consentano loro di continuare a studiare per lo più in modo auto-diretto o autonomo.

In termini di **Conoscenze**, **Abilità e Competenze**, gli obiettivi sono di raggiungere un certo livello, nell'ambito degli argomenti di geometria e topologia citati sopra, descritto come segue:

- 1. Conoscenze: Conoscenze altamente specializzata sulla topologia algebrica dei complessi simpliciali, teorie di omologia, coomologia e alcuni aspetti della teoria di omotopia, parte delle quali all'avanguardia in un ambito di lavoro o di studio, come base del pensiero originario e/o della ricerca. Consapevolezza critica di questioni legate alla conoscenza all'interfaccia tra la geometria la topologia e le applicazioni (analisi topologica di dati, per esempio, o sistemi dinamici).
- Abilità: Abilità specializzate, orientate alla soluzione di problemi in geometria e topologia e applicazioni, necessarie nella ricerca e/o nell'innovazione al fine di sviluppare conoscenze e procedure nuove e integrare la conoscenza ottenuta in ambiti diversi.
- 3. Competenze: Gestire e trasformare contesti di lavoro o di studio complessi, imprevedibili che richiedono nuovi approcci strategici, di tipo sia analitico che topologico e geometrico. Assumere la responsabilità di contribuire alla conoscenza e alla prassi professionale e/o di verificare le prestazioni strategiche dei gruppi

Contenuti sintetici

Complessi simpliciali, omologia e coomologia dei poliedri, varietà triangolabili, gruppi di omotopia, applicazioni all'analisi di dati e ai sistemi dinamici.

Programma esteso

Richiami su spazi topologici, connessione e compattezza. Spazi topologici euclidei, e spazi di funzioni. Cenni sulle categorie e i diagrammi di push-out. Complessi simpliciali euclidei e astratti. Introduzione all'algebra omologica. Omologia con coefficienti. Categoria dei poliedri. Omologia dei poliedri. Prodotti di poliedri. Coomologia di poliedri. L'anello in coomologia, il prodotto cap. Varietà triangolabili. Superfici e classificazione. Dualità di Poincaré. Gruppo fondamentale di poliedri. Gruppo fondamentale e omologia. Gruppi di omotopia. Teoria di ostruzione. Applicazioni: omologia computazionale, omologia persistente, analisi di dati e sistemi dinamici.

Prerequisiti

Corsi di base di geometria e algebra della Laurea Triennale.

Modalità didattica

Lezioni frontali

Materiale didattico

Ferrario, Piccinini, "Simplicial structures in topology". CMS Books in Mathematics, Springer, New York, 2011. xvi+243 pp. ISBN: 978-1-4419-7235-4

Periodo di erogazione dell'insegnamento

Modalità di verifica del profitto e valutazione

Esame orale, sul contenuto del corso, approfondimenti, rielaborazione ed esposizione personale.

Una parte integrante dell'esame sarà costituita dall'esposizione di un argomento teorico, che ogni studente dovrà

In occasione di ogni appello d'esame, il calendario dettagliato degli esami individuali, comprensivi delle esposizion teoriche,

Il voto è in trentesimi, ed esprime una valutazione complessiva di tutto cioè che concorre al raggiungimento degli obiettivi formativi sopra descritti. Cioè, è frutto di una valutazione complessiva delle varie caratteristiche della prova. Per esempio: chiarezza, rigore, autonomia di giudizio, capacità di scegliere esempi e di illustrare l'argomento in modo efficace.

Orario di ricevimento

Su appuntamento, oppure di lunedì, 15:30.