

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Actuarial Mathematics

2122-2-F1601M065-F1601M045M

Obiettivi formativi

I principali obiettivi del corso sono i seguenti:

- che lo studente conosca i modelli probabilistici fondamentali della durata della vita umana e il calcolo delle grandezze a essi collegati
- che lo studente sappia calcolare il valore attuale attuariale di qualsiasi prestazione assegnata
- che lo studente comprenda la dinamica della riserva matematica, sia in un approccio tradizionale 'best estimate' che in un approccio stocastico
- che lo studente comprenda la problematica astratta del calcolo del premio, ponendola in relazione alla problematica del pricing degli strumenti derivati, alla teoria della utilità attesa e alla teoria delle misure di rischio
- che lo studente sappia riconoscere gli elementi di opzionalità presenti nelle polizze vita con rendimenti minimi garantiti.

_				- 4 1				
	\sim	าte	nı			m	\sim t	-
u	UI	ILC		uu	. 31		Œι	ı

The bridgering relation to discuss problem is the above, based bridge, the strates, buy destrooted, residence based varieties decoding.

- 2) Matematica attuariale tradizionale (calcoli di valori attuali attuariali, determinazione del premio, riserva matematica, formule ricorsive, scomposizione del premio e scomposizione dell'utile).
- 3) Principi di calcolo del premio (premio di indifferenza, premio esponenziale, premio di Esscher, impostazione assiomatica, misure di rischio distorte).
- 4) Opzioni e assicurazioni (opzioni implicite nei contratti assicurativi, polizze vita rivalutabili, unit linked, index linked). Introduzione a Solvency II.

Programma esteso

- 1) La durata della vita umana. Funzione di sopravvivenza e funzione di sopravvivenza condizionata. Notazioni attuariali internazionali. Tavole di mortalità. Probabilità di morte differite. Forza di mortalità. Aspettativa di vita completa e incompleta. La legge di Gompertz Makeham. Modelli a mortalità stocastica. Il modello di Lee-Carter e le sue proprietà.
- 2) Concetto di valore attuariale. Valutazione di prestazioni attuariali: capitale differito, TCM, vita intera, rendite vitalizie e rendite temporanee. Formule ricorsive. Determinazione del premio: premi unici, premi periodici, premi naturali, premi costanti. Controassicurazione. Calcolo della riserva matematica. Formule ricorsive. Equazione di Fouret. Decomposizione del premio in premio di rischio e premio di risparmio. Determinazione dell'utile. Formula di Homans.
- 3) Richiami sulla teoria della utilità attesa. Premio di indifferenza. Premio esponenziale e sue proprietà. Trasformazione di Esscher. Esempi. Premio di Esscher e Option Pricing: il caso del modello di Black-Scholes. L'impostazione assiomatica del problema del calcolo del premio.

Esempi di principi di calcolo del premio e loro proprietà; legami con le misure di rischio.

Definizione di misure di rischio distorte e loro proprietà. Esempi. Il caso del Value at Risk e della Expected Shortfall.

4) Opzioni e assicurazioni. Opzioni implicite nelle assicurazioni vita. Esempi di pricing. Opzioni forward start e cliquet. Polizze vita con contenuto finanziario: rivalutabili, unit linked e index linked. Cenni sugli strumenti finanziari legati alla mortalità. Introduzione a Solvency II.

Prerequisiti

Metodi didattici
Lezione frontale.
Nel caso dovesse continuare il periodo di emergenza Covid19, le lezioni verranno svolte in modalità da remoto.
Modalità di verifica dell'apprendimento
Esame orale che verte su tutto il programma del corso, con possibilità di un preappello scritto (costituito da 2 domande a risposta aperta e due esercizi) per gli studenti che partecipano attivamente al corso.
Testi di riferimento
-Slides del corso
- Dickson, Hardy, Waters, Actuarial mathematics for Life-Contingent Risks
- Gerber, Life Insurance Mathematics, Springer
- A. Olivieri, E. Pitacco, Introduction to Insurance Mathematics
Periodo di erogazione dell'insegnamento
Secondo semestre
Lingua di insegnamento
Inglese

Lo studente deve avere conoscenze di base di teoria della probabilità, analisi e matematica finanziaria.