

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Statistical Modeling

2122-1-F9101Q009

Obiettivi formativi

Il corso ha quale obiettivo lo studio di modelli lineari avanzati, partendo dal modello lineare classico fino ad arrivare ai modelli multivariati.

Contenuti sintetici

Il corso ha quale obiettivo lo studio di modelli più avanzati del modello lineare classico. Si presentano perciò

- · modelli lineari generalizzati,
- modelli lineari multivariati
- modelli multilevel

Programma esteso

Il corso ha quale obiettivo l'introduzione alla specificazione, stima e verifica di modelli interpretativi dei dati di tipo lineare più avanzati del modello lineare classico. Si presentano perciò

· Modelli lineari che non rispettano le ipotesi del modello lineare classico: modelli con errori esteroschedastici e correlati, modelli non lineari, trattamento di outlier, modelli GLS

- Modelli lineari multivariati: dal modello classico multivariato al modello seemingly unrelated
- · Modelli multilevel per dati gerarchici: la natura dei dati gerarchici, anova ad effetti fissi, modelli mixed (random slope, random intercept)

Ciascun ambito sarà l'oggetto specifico di un modulo del corso. L'attività formativa è svolta attraverso lezioni teoriche e lezioni pratiche in laboratorio statistico-informatico nelle quali si affronteranno analisi su casi empirici mediante l'uso dei software R e SAS. Il materiale del corso (sia delle lezioni teoriche sia delle lezioni pratiche) e ulteriori informazioni verranno riportate sulla pagina web dedicata nella piattaforma e-learning unimib: http://elearning.unimib.it/.

Prerequisiti

• Statistica descrittiva univariata : indici di posizione; indici di variabilità:a; indici di simmetria e di curtosi.

Statistica descrittiva bivariata: connessione, dipendenza in media, correlazione lineare, regressione lineare bivariata, multipla, multivariata, polinomiale, non lineare.

Teoria della probabilità: popolazione e campione; significato di probabilità nella versione classica; elementi di calcolo combinatorio; tipi di campionamento; distribuzioni di variabili casuali univariate; variabili casuali Normale, t di Student, F d Snedecor; distribuzioni casuali campionarie

Inferenza: teoria della stima, proprietà dello stimatore puntuale; stima intervallare; verifica di ipotesi, test di ipotesi di Neyman Pearson; test di ipotesi sulle medie basati su Normale, t di Student; test di ipotesi sulla varianza.

Modello lineare classico: ipotesi; stima dei parametri del modello nel campione e nella popolazione; proprietà degli stimatori dei minimi quadrati; test di ipotesi sui parametri basati su Normale, t di Student, ; test di ipotesi sul modello e su gruppi di parametri, su un parametro basata F di Snedecor

Algebra delle matrici

Si suggerisce a chi non provenga da corsi triennali di statistica o economia di seguire preventivamente i corsi introduttivi del corso di laurea di biostatistica calcolo delle probabilità, introduzione all' inferenza stastistica, introduzione ai modelli statistici, modelli statistici per dati categoriali e conoscano i pacchetti statistici R o SAS.

Metodi didattici

Le lezioni si distinguono in parte teorica e parte applicata. Durante la parte teorica vengono presentate i framework metodologici relativi al corso, che vengono poi applicati durante le lezioni pratiche in laboratorio. In laboratorio si utilizzano i software SAS ed R con attenzione ai codici e alla lettura dei degli output dei modelli. Lezioni ed

esercitazioni saranno registrate sulla piattaforma e-learning

Modalità di verifica dell'apprendimento

L'esame si svolge attraverso una prova da sostenere presso il laboratorio informatico e consiste in due domande di teoria e un esercizio pratico. L'esercizio riguarda uno dei temi proposti durante le esercitazioni svolte a lezione e riguarda la risoluzione di un problema tramite il software R o SAS e il commento ai risultati.

Testi di riferimento

Il principale testo di riferimento è la dispensa del corso, resa disponibile in formato digitale sulla piattaforma elearning. La dispensa contiene sia la parte teorica che esempi pratici.

Testi consigliati:

- Wooldridge, J. M. (2015). Introductory econometrics: A modern approach. Cengage learning.
- Freund, R. J., Wilson, W. J., and Sa, P. (2006), Regression Analysis: Statistical Modeling of a Response Variable, 2nd edition, Academic Press
- Baltagi B. H. (2008), Econometrics, fourth Edition, Springer Berlin
- Littell, R. C., Freund, R. J., and Spector, P. C. (2002), SAS for Linear Models, 4th Edition, Cary, NC: SAS Institute Inc.
- -Rencher, A. C., Methods of Multivariate Analysis, Wiley
- Manual SAS/STAT 15.1
- Faraway, J. J. (2004). Linear models with R. Chapman and Hall/CRC.

Periodo di erogazione dell'insegnamento

III ciclo che corrisponde al 2 semestre nel periodo tra marzo e aprile.

Lingua di insegnamento

Italiano

