

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Sistemi Complessi: Modelli e Simulazione

2122-1-F1801Q107

Obiettivi

Gli studenti apprenderanno nuovi modelli, astrazioni e meccanismi utili per la modellazione di sistemi complessi e anche strumenti pratici per la progettazione e realizzazione di sistemi informatici (prevalentemente ma non esclusivamente) volti alla simulazione di sistemi complessi secondo un approccio orientato agli agenti.

Contenuti sintetici

Il corso intende fornire agli studenti strumenti concettuali e computazionali sviluppati nelle aree delle Scienze della Complessità e dell'Intelligenza Artificiale Distribuita con finalità di simulazione di sistemi complessi o progettazione di sistemi caratterizzati dalla presenza di componenti autonome interagenti (agenti). In particolare, saranno presentati e discussi modelli basati su automi-cellulari e sistemi multi-agente, sempre più utilizzati e diffusi negli studi di sistemi complessi (quali i sistemi biologici, sociali, economici), ma che definiscono anche astrazioni e meccanismi utili per la progettazione di sistemi informatici distribuiti (ad esempio per il monitoraggio e controllo, per la progettazione di "smart environment", per la realizzazione di sistemi di supporto al lavoro cooperativo, in sistemi web avanzati).

Programma esteso

- 1. Introduzione al concetto di agente e sistemi multi-agente: dal singolo agente intelligente ad un sistema multi-agente; architetture di agente; modelli di interazione fra agenti; agenti ed ambiente.
- 2. Automi cellulari e simulazione di sistemi complessi: sistemi complessi e sistemi complicati; automi cellulari monodimensionali e bidimensionali e loro applicazioni a casi paradigmatici di sistemi complessi: simulazione di traffico veicolare e di dinamiche di popolazione in sistemi biologici.

- 3. Dagli automi cellulari ai sistemi multi-agente: modellazione e simulazione basata su agenti; modellazione e simulazione di pedoni e folle con agenti situati; social simulation; integrazione di modelli eterogenei; altri casi di studio
- 4. Agenti deliberativi: agenti cognitivi e stati mentali; concetto di deliberazione; esempi di modelli, linguaggi e ambienti per agenti deliberativi
- 5. Esempi di applicazioni di sistemi basati su agenti e multi-agente: applicazioni avanzate web; sistemi di supporto al lavoro cooperativo in ambienti di pervasive computing; ambienti reattivi e 'smart environment'

Prerequisiti

Nessuno in particolare. Competenze di base di programmazione possono essere utili al fine della realizzazione del progetto d'esame.

Modalità didattica

I temi trattati saranno presentati in relazioni agli aspetti teorici e metodologici ma anche discussi in relazione ad esempi pratici e casi di studio; saranno presentati e discussi in opportune esercitazioni alcuni strumenti per la realizzazione di simulatori basati su modelli e approcci discussi a lezione; saranno inoltre di volta in volta date indicazioni per approfondimenti nella letteratura scientifica del settore. Il corso è in lingua italiana, sebbene il materiale didattico sia in lingua inglese.

L'edizione del 2020/21 è stata svolta a distanza (lezioni videoregistrate ed alcune lezioni "in sincrono" svolte tramite sistemi di teleconferenza e comunque registrate), ad oggi si prevede di svolgere l'edizione 2021/22 in presenza, ma ogni cambiamento dipenderà dalla situazione dell'emergenza COVID-19.

Materiale didattico

Libro di testo, per la prima parte del corso (punto 1 del programma dettagliato): Multi-Agent System: An Introduction to Distributed Artificial Intelligence. Jacques Ferber, Harlow: Addison Wesley Longman, 1999, ISBN 0-201-36048-9

Ulteriore materiali didattici: slide presentate a lezione e rese disponibili tramite piattaforma di eLearning, articoli scientifici suggeriti.

Periodo di erogazione dell'insegnamento

Secondo semestre.

Modalità di verifica del profitto e valutazione

Viene richiesta la realizzazione di un approfondimento in relazione ai temi trattati durante il corso che comporta la realizzazione di un progetto (realizzazione e sperimentazione di un simulatore in forma prototipale), con una discussione orale estesa a tutti i temi trattati nel corso.

Il tema dell'approfondimento e del progetto viene di norma concordato con il docente, anche durante lo svolgimento del corso; il docente fornisce una valutazione dell'adeguatezza e della difficoltà del lavoro ipotizzato, e propone delle indicazioni utili alla impostazione del lavoro.

Orario di ricevimento

Mercoledì mattina dalle 9:30 alle 11:30 o altro orario su appuntamento, eventualmente anche per via telematica.