

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Chimica Inorganica per le Formulazioni

2122-2-F5401Q061

Obiettivi

Obiettivi generali

Presentare i concetti base della chimica delle formulazioni, con particolare focus sul ruolo e le classi di composti inorganici nell'ambito delle principali applicazioni industriali e di ricerca scientifica e tecnologica.

Conoscenze e capacità di comprensione

Al termine del corso lo studente dovrà essere in grado di:

- 1) distinguere la tipologia di formulazione in esame sulla base dei suoi componenti
- 2) individuare chiaramente componenti attivi e additivi compatibilizzanti in una formulazione
- 3) conoscere il ruolo dei componenti inorganici in alcuni tipi principali di formulazioni

Conoscenza e capacità di comprensione applicate

Lo studente dovrà essere in grado di:

- 1) proporre metodi di preparazione e funzionalizzazione di componenti inorganici adatti ad essere impiegati una data formulazione
- 2) conoscere gli ambiti principali di applicazione dei composti inorganici nelle formulazioni industriali

Autonomia di giudizio

Lo studente dovrà essere in grado di:

- scegliere la metodologia di sintesi e funzionalizzazione più adeguata per sistemi inorganici inclusi in tipiche formulazioni industriali
- · individuare le soluzioni ai problemi più comuni di impiego dei composti inorganici nelle formulazioni

Abilità comunicative.

Lo studente alla fine del corso dovrà essere in grado di descrivere gli argomenti affrontati con proprietà di linguaggio.

Capacità di apprendere.

E' in grado di estendere quanto appreso a casistiche non trattate durante il corso. E' in particolar modo in grado di gestire autonomamente l'ampia letteratura tecnica dedicata alle Formulazioni. Conosce gli strumenti di ricerca della letteratura dedicata, inclusi i brevetti.

Contenuti sintetici

Il corso mira a presentare i concetti fondamentali necessari per comprendere il ruolo dei componenti inorganici nella formulazione di sistemi complessi, come dispersioni colloidali, materiali ibridi organici-inorganici e strutture self-assembled. Lo studio e il controllo delle interazioni all'interfaccia inorganico-organico determina le proprietà dei materiali usati nelle principali formulazioni impiegati in diversi ambiti come automotive, farmaci, beni culturali, cosmetici, etc.

Programma esteso

- I colloidi, la dimensione trascurata: introduzione storica ed evoluzione del concetto di colloidi
- Definizione, classificazione e natura delle dispersioni colloidali. Caratteristiche fisiche rilevanti di un colloide (forma, dimensione, aggregazione, polidispersione).
- Recall della Chimica fisica e termodinamica di superficie e delle interfacce. Stabilità cinetica e termodinamica delle dispersioni colloidali. Chimica di superficie e carica superficiale nei sistemi colloidali, doppio strato elettrico. Diffusione, moto browniano. Teoria Derjaguin-Landau-Vervey- Overbeek (DLVO).
- o Meccanismi di aggregazione e destabilizzazione di una sospensione colloidale: flocculazione, coagulazione, sedimentazione, Ostwald ripening, coalescenza.
- 2) Sintesi, funzionalizzazione, caratterizzazione ed applicazioni di nanoparticelle (NPs) colloidali e altri sistemi inorganici molecolari impiegati nelle formulazioni
 - o Approcci sintetici di NPs colloidali: controllo della morfologia e della funzionalizzazione superficiale
 - Esempi di controllo morfologico attraverso sintesi sol-gel, idrotermale, colloidale (hot-injection, heating-up)
 - Strategie di funzionalizzazione: individuazione di funzionalizzanti ed approcci sintetici di NPs funzionalizzate e film (anche in relazione a tecniche quali dip-coating, spin-coating di fatto usate nella preparazione di dispositivi)
 - Preparazione di materiali ibridi organici-inorganici usati nelle formulazioni a partire da particelle funzionalizzate e sistemi inorganici

 Esempi di formulazioni from laboratory to market anche mediante seminari tenuti da relatori provenienti da aziende (e.g. NPs come filler in nanocompositi usati per automotive, packaging, anti-icing; NPs funzionalizzate usate in nanomedicina)

Prerequisiti

Buone conoscenze di base della chimica inorganica, organica e della chimica fisica. Elementi di chimica generale.

Modalità didattica

4 CFU di lezioni frontali in lingua italiana o inglese integrate da strumenti multimediali (Slides, video) di supporto funzionali ad una miglior comprensione degli aspetti pratici. 2 CFU costituiti da attività di laboratorio (esperienze connesse alle tematiche descritte a lezione).

Materiale didattico

Slides disponibili sul sito e-learning del Corso di Laurea

Libri di testo consultabili:

- 1. Formulation Technology: Emulsions, Suspensions, Solid Forms. Author(s):Dr. Hans Mollet, Dr. Arnold Grubenmann 2001 WILEY?VCH Verlag GmbH
- 2. Introduction to Applied Colloid and Surface Chemistry. Authors: Georgios M. Kontogeorgis and Søren Kiil, 2016 Wiley & Sons, Ltd.
- 3. Formulation Science and Technology. Authors: Tadros, Tharwat F., 2018, De Gruyter

Periodo di erogazione dell'insegnamento

primo semestre

Modalità di verifica del profitto e valutazione

Colloquio orale mirante a verificare la capacità di riconoscere la funzione specifica svolta da ciascun elemento introdotto in una formulazione complessa. dal punto di vista delle loro caratteristiche strutturali

Orario di ricevimento

su appuntamento