

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Computational Systems Biology

2122-1-F0802Q068

Obiettivi

L'insegnamento si propone di presentare le principali metodologie computazionali nell'ambito della Systems Biology, e di fornire le basi concettuali e gli strumenti per integrare dati e conoscenze biologiche con metodi informatici e matematici. Obiettivo dell'insegnamento è sviluppare le capacità di analisi critica dello studente, illustrando come sia possibile studiare il funzionamento di sistemi biologici complessi tramite approcci multidisciplinari. A tale scopo verranno presentati numerosi esempi basati sull'analisi interdisciplinare di processi cellulari (reti di regolazione genica, vie di trasduzione del segnale, vie metaboliche, processi di morte cellulare programmata, ecc.) e sistemi multicellulari.

Conoscenza e capacità di comprensione.

Al termine dell'insegnamento lo studente dovrà sviluppare la capacità di scegliere il metodo matematico/computazionale più adeguato per formalizzare e analizzare un sistema biologico, e di discutere in modo critico i limiti e i vantaggi dei vari approcci di modellazione e analisi di sistemi biologici complessi.

Capacità di applicare conoscenza e comprensione.

Al termine dell'insegnamento lo studente dovrà essere in grado di applicare le conoscenze acquisite per l'analisi di sistemi biologici complessi.

Autonomia di giudizio.

Al termine dell'insegnamento lo studente dovrà essere in grado di elaborare quanto appreso, e saper riconoscere le situazioni e i problemi in cui le diverse metodologie di modellazione e analisi computazionale apprese possano essere utilizzate per lo studio di sistemi biologici complessi.

Abilità comunicative.

Al termine dell'insegnamento lo studente dovrà essere in grado di esprimersi in modo appropriato nella descrizione delle tematiche affrontate, con proprietà di linguaggio e sicurezza di esposizione.

Capacità di apprendimento

Al termine dell'insegnamento lo studente dovrà essere in grado di consultare la letteratura sugli argomenti trattati,

nonché analizzare, applicare, integrare e collegare le conoscenze acquisite con quanto verrà appreso in insegnamenti correlati allo studio di sistemi biologici complessi.

Contenuti sintetici

Introduzione alla modellazione, simulazione e analisi di sistemi biologici complessi.

Modelli basati su interazioni.

Modelli logici.

Modelli basati su vincoli.

Modelli meccanicistici.

Integrazione di modelli e metodi di analisi.

Metodi computazionali per la definizione e l'analisi di modelli meccanicistici.

Il concetto di robustezza nei sistemi biologici.

Programma esteso

Modellazione di sistemi biologici.

Il concetto di sistema complesso. Livelli di complessità nello studio dei sistemi biologici (scala temporale e scala spaziale). Regole di base e criteri per la scelta dell'approccio matematico più appropriato. Il ciclo iterativo di ricerca (modellazione) in Systems Biology. Definizione di un modello: identificazione della struttura del sistema, livello di astrazione, scopo della modellazione. Dicotomie in Systems Biology. Panoramica della molteplicità degli approcci di modellazione: discussione critica di vantaggi e svantaggi, limiti e punti di forza di ogni approccio. Descrizione e differenze fra le principali tipologie di modelli per sistemi biologici: modelli basati su interazioni, modelli logici, modelli basati su vincoli, modelli meccanicistici.

Modelli basati su interazioni.

Elementi di teoria dei grafi per la definizione dei modelli basati su interazioni. Metodi computazionali basati su grafi per l'analisi di reti biologiche a larga scala: nozioni di degree distribution, clustering coefficient, hub. Proprietà topologiche: caratteristiche e differenze fra reti random, scale-free, gerarchiche; concetti di preferential attachment e modularità nella formazione e struttura di una rete. Il concetto di robustezza strutturale di una rete. Presentazione e discussione critica di modelli basati su interazioni presenti in letteratura (reti di interazione proteina-proteina, reti di regolazione genica, ecc.).

Modelli logici.

Elementi di logica booleana e logica fuzzy. Caratteristiche dei modelli logici e relativi metodi di analisi (caratterizzazione di attrattori, cicli, dinamica del sistema). Presentazione e discussione critica di modelli logici presenti in letteratura (es. reti di regolazione genica, morte cellulare, ecc.).

Modelli basati su vincoli.

Elementi di algebra e programmazione lineare per la definizione di modelli basati su vincoli (via metaboliche, da modelli "toy/core" a modelli "genome-wide"). Metodi computazionali per l'analisi di modelli basati su vincoli: flux balance analysis. Presentazione e discussione critica di modelli basati su vincoli presenti in letteratura.

Modelli meccanicistici.

Il concetto di sistema dinamico. Definizione e differenze fra modelli deterministici, stocastici e ibridi. Modelli "reaction-based". Approccio deterministico: definizione di sistemi di equazioni differenziali ordinarie; approssimazioni ed esempi. Metodi di simulazione per modelli deterministici: gli algoritmi di integrazione numerica di Eulero e Runge-Kutta. Sistemi caratterizzati da stiffness, algorimi adattivi. Approccio stocastico: basi fisiche, ipotesi fondamentale e Chemical Master Equation. Il concetto di rumore biologico: rumore intrinseco ed estrinseco. Effetti del rumore biologico: fenomeni di switching e bistabilità. Metodi di simulazione per modelli stocastici: l'algoritmo di simulazione stocastica di Gillespie. Approccio ibrido determistico/stocastico, modelli spaziali. Presentazione e discussione critica di modelli meccanicistici presenti in letteratura (vie di trasduzione del segnale,

ciclo cellulare, ecc.).

Integrazioni di modelli e metodi di analisi.

Introduzione al problema dell'integrazione di modelli definiti con approcci differenti e uso dei rispettivi metodi computazionali. Presentazione e discussione critica di approcci integrati presenti in letteratura.

Metodi computazionali per la definizione e l'analisi di modelli meccanicistici.

Definizione e importanza dei parametri; problematiche computazionali nell'inferenza dei parametri non noti, legate a precisione, ampiezza e sistematicità nella misurazione dei dati biologici. Il concetto di problema di ottimizzazione: introduzione a metodi di computazione evolutiva per la soluzione di problemi di ottimizzazione relativi allo studio dei sistemi biologici. Presentazione e discussione critica dei metodi computazionali per i problemi di reverse engineering, parameter sweep analysis, parameter estimation, sensitivity analysis. Cenni di analisi delle biforcazioni.

Il concetto di robustezza dei sistemi biologici.

Relazione fra robustezza e parametri. Principi organizzativi di sistemi robusti: meccanismi di controllo, meccanismi fail-safe, modularità. Robustezza ed evoluzione: il concetto di architettura bow-tie. Un esempio di sistema complesso robusto (il cancro) e analisi delle problematiche computazionali dovute ai diversi livelli di complessità spaziale/temporale del cancro.

Prerequisiti

Prerequisiti. Non sono necessarie conoscenze preliminari specifiche di matematica o informatica, tutte le nozioni indispensabili per la comprensione degli argomenti trattati durante l'insegnamento verranno spiegate di volta in volta.

Sono invece richieste una forte curiosità e apertura mentale nello scoprire e studiare la biologia sotto una prospettiva innovativa, così come la volontà a partecipare attivamente alle lezioni, e a creare un ambiente collaborativo e di discussione critica con il docente e i propri compagni.

Propedeuticità. Nessuna.

Modalità didattica

Lezioni frontali in aula (35 ore, 5 CFU) supportate da slides.

Esercitazioni (8 ore, 1 CFU) su modellazione di sistemi biologici (lavoro di gruppo in aula) e utilizzo di software specifico per Systems Biology.

Tutorato disciplinare (6 ore): attività seminariali di approfondimento di specifiche tematiche del programma dell'insegnamento.

L'insegnamento verrà tenuto in lingua inglese se ne farà richiesta almeno il 10% degli studenti frequentanti.

Materiale didattico

Slides delle lezioni e delle esercitazioni reperibili sulla pagina e-learning dell'insegnamento.

Testi consigliati:

- E. Klipp, W. Liebermeister, C. Wierling, A._Kowald. Systems Biology: A Textbook. 2nd Ed. Wiley, 2016.
- Z. Szallasi, J. Stelling, V. Periwal. System modeling in cellular biology. The MIT Press, 2006.

Periodo di erogazione dell'insegnamento

Secondo semestre.

Modalità di verifica del profitto e valutazione

Esame finale scritto, con orale facoltativo (su richiesta dello studente):

- prova scritta obbligatoria (3 ore) con 3 domande aperte sugli argomenti del programma, al fine di valutare le capacità di comprensione, riflessione autonoma e comunicazione dello studente;
- prova orale facoltativa (circa 30 minuti): presentazione e discussione critica di un articolo di ricerca di Computational Systems Biology (approfondimento di argomento non trattato a lezione).

Non saranno svolte prove in itinere.

Orario di ricevimento

Ricevimento su appuntamento previa richiesta via e-mail al docente.