

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Statistical Data Analysis

2122-1-F1701Q096

Aims

provide the student with the needed data analysis techniques for a degree thesis in physics

Contents

data analysis techniques:

- introduction to probability and statistics
- introduction to Montecarlo techniques
- parameter estimation
- unfolding techniques
- data acquisition techniques
- MVA analysis

Detailed program

Numerical calculus

Introduction to numerical calculus, computer aritmethics, algorithm stability, treatment of calulus errors.

Examples of numerical techniques: numerical integration, interpolation methods, splines, function minimization, smoothing (*).

• Introduction to data acquisition

Introduction to data acquisition. Analog signal conversion. Introduction to the CAMAC and VME standard. Examples of DAQ systems. Introduction to an experiment slow control and Labview (*).

• Resume of probability and statistics :

Fundamental concepts, Bayes theorem and bayesian interpretation of probability. Examples of probability functions with applications. Error propagation. Characteristic functions and central limit theorem (CLT). Treatment of systematic errors.

• Statistical tests and parameter estimation :

Hypothesis test with examples. Neyman-Pearson test, linear statistics and Fischer discriminant. Non linear statistics and neural networks. Kolmogorov Smirnov test. Estimation of parameters.

• Introduction to Monte Carlo methods:

Introduction. Random numbers generators. Montecarlo methods. Applications.

Introduction to the pakage GEANT4 (*)

• Confidence levels :

Classical confidence levels, multidimensional confidence levels. Applications.

• Metodi di Unfolding e filtraggio dei dati :

The unfolding problem, regularization functions (MaxEnt, Tikhonov). Data filtering. Applications.

Introduction to multivariate techniques (MVA):

Introduction. Statistical tests. Neuronal nets. The perceptron and the NN multilayers. Pattern classification. Examples with applications. Decision trees.

• Introduction to econophysics (*)

1. Introduction to graph theory. Knots theorems. Examples. Graphs kinds: random, loopless, scaling-free.

2. Stochastic processes. General considerations. CLT theorem.. Distributions with infinite variance: Levi processes. Fractional derivative of random walk. 3. Introduction to finance and stock markets. Characteristics. Distribution of returns. Stock market prices models: ARCH. Correlations between financial securities. Applications. 4. Stock market prices model with 4 parameters. Fractional derivative to simulate volatility correlations. Skewness and leverage effect. Volatility behavioor and variation of stock market index Introduction to signals treatment(*): - Signal classification - sampling theorem and aliasing - discrete Fourier transform and Fast Fourier Transform - Digital filtering - Wavelets - Applications

Items marked with (*) are optionals

Prerequisites

courses of Physics bachelor degree, with emphasis on calculus and laboratory ones

Teaching form

lectures

Textbook and teaching resource

suggested textbooks:

for the Statistical Analysis section:

- W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling

"Numerical Recipes in C++, The Art of Scientific Computing",

Cambridge University Press

- M.Cugiani ``Metodi dell' analisi numerica", edizioni UTET
- L. Lista `` Statistical Methods for Data Analysis in Particle Phylisics",

Springer Verlag

- L. Lyons "Statistics for Nuclear and Particle Physicists",

Cambridge University Press

- R. Barlow ``Statistics: A guide to the use of Statistical

Methods in the Physical Sciences", J. Wiley

- Hertz, A. Krogh, R.G. Palmer `Introduction to the Theory of Neural

Computation ", Addison Wesley

for programming:

- J.J. Barton, Lee R. Nackman `` Scientific and Engineering C++", Addison Wesley
- D. Yevick ``A First Course in computational Physics and Object-Oriented

Programming with C++", Cambridge University Press

Semester

2nd semester

Assessment method

oral examination based on a seminar + discussion of homework exercises

Office hours

contact by e-mail

