

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Fisica delle Particelle I

2122-1-F1701Q087

Obiettivi

Il corso si prefigge di fornire un'introduzione di base alla fisica delle particelle discutendone le proprieta', la classificazione e le principali leggi che ne regolano le interazioni. Il corso sara' corredato di esempi ed esercizi numerici.

Contenuti sintetici

Classificazione delle particelle. Esperimenti fondamentali e sviluppo temporale della ricerca. Interazioni e Campi. Barioni e mesoni. Leptoni. Adroni. Quarks negli Adroni. Deep inelastic scattering e partoni. Colore. Interazioni dei Quarks e QCD. Interazioni Deboli. Teoria di Fermi. Interazioni Elettrodeboli.

Programma esteso

Cenni storici

Dalla scoperta dei raggi cosmici agli esperimenti degli anni 50'

Nucleoni, leptoni e mesoni

Il muone ed il pione; mesoni strani e iperoni; i numeri quantici del pione; i leptoni; le antiparticelle

Adroni

Risonanze; risonanze in formazione e produzione; sezioni d'urto ?(K)-protone; interazioni di stato finale; Dalitz plot;

le risonanze adroniche e gli iperoni; multipletti mesonici e barionici; il puzzle ?-? ed il Dalitz plot triangolare; numeri quantici delle risonanze; mesoni pseudo-scalari e vettoriali; SU(3)f e il modello a quark; la ? e la ?; la ? ed il colore; la J/? e il charm; la terza famiglia di quark; le particelle Y; il quarkonio.

QCD

Collisori e+e-; rapporto R e colore; jets; spin del gluone; DIS: cinematica e sezioni d'urto di Rutherford, Mott e Rosenbluth; lo scaling di Bjorken ed i partoni, le funzioni di struttura; i gluoni; violazioni dello scaling; applicazioni elementari della QCD: fattori di colore negli stati legati e nelle sezioni d'urto adroniche; stati legati adronici; la rinormalizzazione in QCD e $?_s(Q^2)$; la regola OZI; confinamento e masse adroniche.

Interazioni deboli

Classificazione; la costante di Fermi; universalità; decadimento beta; diffusione ?-e; ancora ???; violazione della parità; spinori di Dirac; chiralità ed elicità; termini di massa; correnti deboli cariche (CC) e neutre (NC); la scoperta delle NC; elicità del neutrino; decadimento del ?; teoria V-A; particelle strane e angolo di Cabibbo; meccanismo GIM; CP e mixing dei quark; matrice CKM; fasci di neutrini; sezioni d'urto di neutrino

Prerequisiti

Struttura della materia. Conoscenza molto basilare delle principali interazioni delle particelle e loro nomenclatura. Nozioni di cinematica relativistica. Principi di simmetria in meccanica quantistica.

Modalità didattica

- Lezioni frontali
- Esercitazione

Nel periodo di emergenza Covid-19 le lezioni si svolgeranno da remoto, in modalità asincrona e sincrona, con alcuni eventi in presenza fisica.

Le lezioni sincrone e asincrone saranno tutte registrate e fruibili negli orari definiti dal calendario accademico 20-21.

Materiale didattico

Slide del corso e principali articoli di esperimenti di importanza storica.

Testo consigliato: A.Bettini - Introduction to Elementary Particle Physics 2nd Ed. - Cambridge University Press

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

Esame orale con discussione degli argomenti trattati durante le lezioni. L'esame includera' anche una parte scritta consistente nella risoluzione di qualche esercizio legato ai contenuti del corso.

Orario di ricevimento

Gli studenti possono venire nel mio ufficio per chiarimenti in qualunque momento. Se serve, mandare un email per fissare un appuntamento.