

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Advanced Theoretical Chemistry
2223-94R-SCGA14
Titolo
Advanced Theoretical Chemistry
Docente(i)
Piercarlo Fantucci
Lingua
English

Breve descrizione

- 1. The discovery of the spin of electrons and other particles. The experiment of Stern-Gerlach. Fine structure of atomic spectra.
- 2. The exchange symmetry and the exclusion principle. Elementary spin functions for two- and three electrons. General antisymmetric

3. The quantum mechanical description of the spin. Dirac's equations, their reductions and simplifications. Spir properties, Pauli
4. The spin and orbital angular momenta. Coupling and the quantum number J. Multiplicity of J components examples from atomic $_{\scriptscriptstyle \perp}$
5. Electron spin and wave equations for molecules. Spin-restricted and spin-unrestricted approaches. Eigenfunction of S z and S 2 . Spin
6. Electron density and spin density. Local properties of spin density. Long range spin-coupling: ferromagnetism antiferromagnetism.
7. The electron spin and the associated magnetic field. Electron spin in external magnetic field. Zeeman effect.
8. Resonance spectroscopies of electron spin and nuclear spin. Spin-spin coupling.
9. Information on molecular and electronic structures from spin resonance spectra. Examples from organic and inorganic chemistry.
10. Revies of methods of quantum mechanical calculation of NMR and EPR observables.
Evaluation: YES
CFU / Ore

Periodo di erogazione

2,5 CFU - 20 Hours (Lecture)

II semester