

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Computational Physics Laboratory

2223-3-E3001Q066

Obiettivi

Apprendere i fondamenti del calcolo numerico ed imparare a risolvere problemi scientifici mediante un computer.

Contenuti sintetici

Concetti iniziali dell'analisi numerica; metodi di integrazione deterministica di funzioni; metodo Monte Carlo ed integrazione stocastica; distribuzioni di probabilita' e teorema del limite centrale; metodi di soluzione di equazioni differenziali; calcolo degli zeri di una funzione.

Programma esteso

Concetti iniziali

- introduzione agli errori di arrotondamento e di troncamento
- codifica dei numeri nel computer
- condizionamento e stabilita

Integrazione deterministica di funzioni

Si presentano vari metodi di integrazione deterministica (trapezio, Simpson, Bode, Romberg, Gauss) di una funzione e si discute la loro accuratezza numerica.

Metodo Monte Carlo e distribuzioni di probabilita'

Introduzione a metodi di integrazione stocastica e confronto di prestazione con i metodi deterministici.

Equazioni differenziali

Si presentano i principali metodi di integrazione numerica di equazioni differenziali: Eulero, leap-frog, Runge-Kutta.

Zeri di funzione

Si discutono i metodi di bisezione e di Newton-Raphson per il calcolo numerico degli zeri di una funzione.

Prerequisiti

Insegnamenti degli anni precedenti. Non sono richiesti prerequisiti particolari a livello di programmazione oltre alla conoscenza dei concetti base: struttura di un codice, definizione di una variabile, di un array, di una funzione e di un ciclo. Il linguaggio di programmazione e' a scelta dello studente tra C e Fortran.

Modalità didattica

L'attivita' e' svolta esclusivamente in presenza nel laboratorio informatico. In alcune lezioni teoriche iniziali si introducono le tecniche numeriche utili allo svolgimento delle esercitazioni di laboratorio; ogni studente esegue in modo individuale le esercitazioni sotto la supervisione e con il supporto del docente.

Materiale didattico

Note del docente che vengono caricate su elearning.unimib.it

Numerical Recipes
William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery
CAMBRIDGE UNIVERSITY PRESS

Periodo di erogazione dell'insegnamento

Due lezioni a settimana nel primo semestre

Modalità di verifica del profitto e valutazione

Le esercitazioni di laboratorio prevedono la soluzione di esercizi mediante la scrittura di codici. I risultati ottenuti e lo studio effettuato vengono raccolti in una relazione che ogni studente deve preparare. L'esame e' orale e verte sulla discussione della soluzione delle esercitazioni proposte. Almeno 2 settimane prima della data dell'esame lo studente deve inviare per email al docente la relazione in formato pdf e una cartella contenente i codici e i risultati. La valutazione complessiva finale si basa sulla prova orale, sull'attivita' svolta in laboratorio, sullo studio effettuato e sulla relazione finale.

Orario di ricevimento

In qualsiasi momento e' possibile richiedere per e-mail un appauntamento.

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ