

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Biophysics Laboratory

2223-3-E3001Q063

Obiettivi

Lo studente apprenderà l'uso di tecniche spettroscopiche di base per la caratterizzazione di biomolecole e nanoparticelle. Inoltre apprenderà le nozioni base relative alla microscopia confocale.

Contenuti sintetici

Assorbimento, Fluorescenza, Scattering dinamico di luce, Spettroscopia Infrarossa, Dicroismo Circolare, Microscopia, Nanoparticelle

Programma esteso

Gli 8 CFU sono ripartiti in 2 CFU di esercitazioni (rigurdanti la spiegazione del funzionamento della strumentazione utilizzata in laboratorio e delle differenti tecniche di spettroscopia e microscopia sfruttate per lo svolgimento degli esperimenti) e 6 CFU di Laboratorio.

Gli argomenti trattati sono:

Spettroscopia di assorbimento e di fluorescenza di biomolecole e fluorofori.

Determinazione della struttura secondaria di proteine e studio del processo di folding-unfolding mediante tecniche ottiche (dicroismo circolare, fluorescenza e spettroscopia infrarossa).

Studio dell'interazione fra biomolecole e ligandi mediante fluorescenza. Misura della dimensione di proteine e dello stato di aggregazione di nanoparticelle d'oro mediante diffusione quasi elastica di luce.

Studio degli effetti di ipertermia di nanoparticelle metalliche prodotti da luce laser infrarossa e visualizzati mediante l'uso di una termocamera.

Uso di un microscopio confocale a fluorescenza per acquisire immagini di cellule e tessuti biologici: analisi delle immagini, misura della risoluzione ottica del sistema.

Prerequisiti

nozioni di elettromagnetismo classico, ottica, elementi di biofisica

Modalità didattica

Lezioni frontali riguardanti la teoria alla base degli esperimenti che verranno svolti.

Laboratorio in cui ogni gruppo di studenti svolgerà le differenti esperienze descritte nel programma del corso.

Materiale didattico

Libri di testo:

Cantor and Schimmel "Biophysical Chemistry"

Robert Pecora, Bruce J. Berne, "Dynamic Light Scattering"

Joseph R Lakowicz, "Principles of fluorescence spectroscopy"

Le slide relative alla parte teorica degli esperimenti saranno rese disponibili sull'e-learning.

Periodo di erogazione dell'insegnamento

Secondo semestre

Modalità di verifica del profitto e valutazione

RELAZIONE DI LABORATORIO che illustano la parte di teoria e di svolgimento degli esperiementi affrontati durante il corso. Le relazioni possono essere svolte in gruppo o singolarmente.

PROVA ORALE, svolta individualmente, con discussione delle relazioni di laboratorio e degli argomenti affrontati durante le lezioni frontali.

Orario di ricevimento

Normalmente il docente e' sempre disponibile per ricevimento, la presenza e' tuttavia garantita solo se preventivamente concordata per mail o di persona a margine delle lezioni.

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ | PARITÁ DI GENERE | IMPRESE, INNOVAZIONE E INFRASTRUTTURE | RIDURRE LE DISUGUAGLIANZE | CONSUMO E PRODUZIONE RESPONSABILI | PARTNERSHIP PER GLI OBIETTIVI