

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Analysis of Biomolecules

2223-2-F5401Q044

Obiettivi

L'insegnamento fornirà allo studente la descrizione dei principali metodi spettroscopici e spettrometrici utilizzati per l'analisi di molecole di piccole e medie dimensioni (metaboliti primari e secondari, piccole molecole di sintesi, peptidi, oligonucleotidi, oligosaccaridi).

In particolare verranno descritte le spettroscopie infrarossa (IR) e di Risonanza magnetica Nucleare (NMR) e la spettrometria di massa (MS).

Le esercitazioni pratiche consentiranno allo studente di apprendere la metodologia di identificazione della struttura chimica di una molecola organica a partire dai relativi spettri, anche con il supporto di siti web di spettri disponibili per scopi didattici.

Conoscenze e capacità di comprensione

Al termine di questa attività formativa, lo studente sarà in grado di:

- 1. descrivere i principi alla base della spettroscopia, della spettrometria di massa (MS) e della spettroscopia NMR;
- 2. descrivere le principali caratteristiche di uno spettro IR, di MS ed NMR e le informazioni in essi contenute;
- 3. descrivere le componenti fondamentali di strumenti MS;
- 4. descrivere le principali reazioni di frammentazione di molecole organiche che possono aver luogo in una sorgente di ionizzazione;
- 5. individuare nuclei attivi e sperimentalmente studiabili con la spettroscopia NMR;
- 6. descrivere le principali caratteristiche degli spettri NMR bidimensionali e le informazioni in essi contenute;
- 7. descrivere le principali applicazioni di IR, MS ed NMR allo studio delle biomolecole.

Capacità di applicare le conoscenze acquisite

Al termine di questa attività formativa, lo studente sarà in grado di:

- 1. correlare la frequenza e l'intensità delle bande presenti in uno spettro IR alla struttura dei composti organici e alle strutture secondarie delle proteine;
- 2. prevedere l'aspetto degli spettri IR, MS e NMR di semplici biomolecole organiche;
- 3. correlare dati sperimentali ottenuti da spettri IR, MS e NMR alle caratteristiche strutturali delle molecole organiche:
- 4. analizzare spettri di MS, IR e NMR determinando grandezze utili quali il rapporto m/z, le abbondanze relative

degli ioni, i chemical shift, le costanti di accoppiamento.

Autonomia di giudizio

Al termine di questa attività formativa, lo studente sarà in grado di:

- 1. scegliere le tecniche analitiche più adatte all'analisi strutturale di una molecola d'interesse;
- 2. selezionare le tecniche più adatte ad ottenere specifiche informazioni strutturali e conformazionali, nonché a studiare fenomeni di interazione molecolare;
- 4. attribuire i segnali presenti nello spettro 1H-NMR di una biomolecola a basso peso molecolare sulla base di spettri NMR mono- e bi-dimensionali (COSY, 2D-TOCSY, 2D-NOESY, HSQC).

Abilità comunicative

Alla fine dell'insegnamento lo studente saprà esprimersi in modo appropriato nella descrizione delle tematiche affrontate con proprietà di linguaggio e sicurezza di esposizione.

Capacità di apprendimento

Al termine di questa attività formativa, lo studente sarà in grado di:

- 1. raccogliere e comprendere le nuove informazioni utili per razionalizzare le proprietà strutturali di composti organici di interesse biologico;
- 2. raccogliere e comprendere le informazioni circa l'evoluzione delle tecniche spettroscopiche e spettrometriche nel contesto dell'analisi di biomolecole e delle loro interazioni molecolari.

Contenuti sintetici

Teoria e applicazioni delle spettroscopie IR ed NMR e della spettrometria di massa all'analisi di biomolecole.

Programma esteso

Spettroscopia IR

Teoria della risonanza IR; bande caratteristiche delle classi di composti organici; discussione dettagliata delle modalità di assorbimento ed emissione della radiazione IR in relazione alla struttura molecolare.

Spettrometria di massa

Principi della spettrometria di massa; massa esatta; sorgenti e analizzatori usati negli spettrometri di massa; applicazioni della spettroscopia di massa allo studio delle proteine

Spettroscopia NMR

Il fenomeno dello spin nucleare; nuclei dotati di spin; il fenomeno dello spostamento chimico; l'accoppiamento di spin; gli spettri dell'idrogeno e del carbonio; lo spettrometro NMR a trasformata di Fourier; acquisizione dei dati e trasformazione del segnale; il trasferimento di magnetizzazione nello spazio e l'effetto NOE; spettri bidimensionali (COSY, TOCSY, NOESY ed HSQC); interpretazione di spettri di piccole molecole organiche (metaboliti, sostanze di sintesi); applicazioni delle spettroscopia NMR a studi di riconoscimento molecolare e al disegno razionale di farmaci.

Prerequisiti

Prerequisiti. Conoscenze base di chimica organica.

Propedeuticità. Nessuna

Modalità didattica

Lezioni frontali ed esercizi pratici in aula sull'interpretazione di spettri.

L'insegnamento verrà tenuto in lingua italiana

Materiale didattico

Slides. A disposizione sulla piattaforma e-learning dell'insegnamento. Dispense. A disposizione sulla piattaforma e-learning dell'insegnamento.

Testi consigliati.

"Spectrometric Identification of Organic Compounds" R. M. Silverstein, F. X. Webster, D. Kiemle

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

Esame scritto, basato su domande sulla teoria e sulle applicazioni di IR, MS e NMR, e la risoluzione di un esercizio che comporta l'assegnamento delle risonanze di una biomolecola a basso peso molecolare sulla base di spettri NMR mono- e bi-dimensionali. Lo scritto dura 2 ore.

Orario di ricevimento

Ricevimento su appuntamento richiesto via mail al docente.

Sustainable Development Goals

SALUTE E BENESSERE

[&]quot;Guida Pratica alla interpretazione di Spettri NMR", Antonio Randazzo.