

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Non Equilibrium Thermodynamics

2223-1-F5401Q068

Obiettivi

L'obiettivo del corso è di fornire agli studenti un quadro concettuale moderno della termodinamica dei sistemi fuori equilibrio, non limitato alla sola termodinamica di quasi-equilibrio, con esempi di applicazioni notevoli.

Conoscenze e capacità di comprensione acquisite

- Impiego di adeguati modelli teorici nella analisi di sistemi non all'equilibrio
- Procedure per il calcolo delle grandezze termodinamiche non all'equilibrio
- Criteri per la valutazione della stabilità di sistemi termodinamici non all'equilibrio

Conoscenze e capacità di comprensione applicative acquisite

- Scrittura delle equazioni evolutive di sistemi termodinamici non all'equilibrio
- Analisi delle connessioni tra termodinamica e meccanica statistica fuori equilibrio
- Strumenti per l'analisi dei sistemi di conversione dell'energia anche in rapporto alla loro sostenibilità

Autonomia di giudizio acquisita

- Sviluppo di capacità critiche nell'impiego dei potenziali termodinamici non all'equilibrio
- Capacità di analisi critica delle teorie termodinamiche

Abilità comunicative

Uso rigoroso del linguaggio naturale in ambito scientifico

Capacità di apprendere

Attivazione di competenze critiche nell'analisi di modelli scientifici

Contenuti sintetici

Termodinamica di equilibrio da un punto di vista superiore. Termodinamica vicino all'equilibrio. Macchine termiche non all'equilibrio. Termodinamica lontana dall'equilibrio. Sistemi dinamici.

Programma esteso

Termodinamica di equilibrio da un punto di vista superiore

Ambito e definizioni; le leggi fondamentali; equazione di Gibbs; relazioni fondamentali ed equazioni di stato; relazione di Eulero; relazione di Gibbs-Duhem; trasformazioni di Legendre e potenziali termodinamici; principi estremali; stabilità degli stati di equilibrio; termodinamica chimica di equilibrio.

Termodinamica vicino all'equilibrio

Concetti di base; ipotesi di equilibrio locale; bilancio entropico; equazioni di evoluzione; stati stazionari; applicazioni alla conduzione del calore e al trasporto di massa; limiti della termodinamica classica dei processi irreversibili. Fenomeni di trasporto accoppiati: conduzione elettrica; effetti termoelettrici; termodiffusione; diffusione attraverso una membrana.

Macchine termiche non all'equilibrio

Termodinamica su tempi limitati: ciclo di Carnot e modello di Curzon-Ahlborn; motori termici eso- ed endoreversibili. La sostenibilità dal punto di vista termodinamico.

Termodinamica lontano dall'equilibrio

Ambito della termodinamica irreversibile estesa; leggi del calore di Fourier e di Cattaneo; entropia estesa; applicazione al trasporto di calore a nanosistemi in condizioni stazionarie. La formula di Einstein e il secondo momento delle fluttuazioni all'equilibrio; derivazione delle relazioni di reciprocità di Onsager-Casimir; teorema di fluttuazione-dissipazione; moto browniano con inerzia.

Sistemi dinamici

Reazioni chimiche e macchine molecolari: reazioni chimiche singole e accoppiate; reazioni chimiche cicliche e relazioni di reciprocità di Onsager; efficienza del trasferimento di energia; reazioni chimiche, trasporto di massa e macchine molecolari; reazioni autocatalitiche e diffusione; morfogenesi. Instabilità e formazione di strutture: teorie lineari e non lineari di stabilità; instabilità chimiche; morfogenesi spazio-temporale in sistemi eterogenei; strutture di Turing.

Prerequisiti

Conoscenze di base di termodinamica e meccanica statistica di equilibrio.

Modalità didattica

Lezioni frontali.

Le lezioni saranno tenute in lingua italiana se non saranno presenti studenti Erasmus; in inglese in caso contrario.

Materiale didattico

Georgy Lebon, David Jou, José Casas Vàzquez, *Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers*, Springer-Verlag Berlin Heidelberg, 2008, http://login.proxy.unimib.it/login?url=http://dx.doi.org/10.1007/978-3-540-74252-4

Periodo di erogazione dell'insegnamento

Primo anno, secondo semestre

Modalità di verifica del profitto e valutazione

Esame orale sulla materia presentata a lezione. Il colloquio orale è volto a verificare il livello delle conoscenze acquisite, la comprensione dei principali snodi concettuali nello sviluppo delle teorie presentate durante il corso ed il corretto uso del linguaggio da parte dell'esaminando/a.

Orario di ricevimento

Su appuntamento

Sustainable Development Goals

ENERGIA PULITA E ACCESSIBILE