

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Statistica Computazionale

2223-1-F8204B004-F8204B007M

Obiettivi formativi

Il corso si propone di fornire le conoscenze per lo sviluppo di tecniche computazionali per l'inferenza in modelli statistici. Verranno forniti quindi gli elementi essenziali della programmazione con R per l'implementazione di tali tecniche.

Contenuti sintetici

Definizione di numeri casuali e pseudo-casuali. Algoritmi per la generazione di numeri pseudo casuali, test di casualità. Introduzione al metodo Monte Carlo e al principio plug-in. Introduzione ai metodi di ricampionamento jackknife e bootstrap. Aspetti numerici e grafici per l'analisi di verosimiglianza.

Programma esteso

- Algoritmi per la generazione di numeri pseudocasuali: tecniche di inversione della funzione di ripartizione, algoritmo accettazione-rifiuto, metodi basati su trasformazioni di variabili casuali, metodi composti, rapporto di uniformi
- · Test di casualità
- Introduzione al metodo Monte Carlo
- Metodi di riduzione della varianza dello stimatore Monte Carlo: il metodo delle variabili di controllo e il metodo delle variabili antitetiche
- · Metodi di ricampionamento: il bootstrap e il jackknife
- Intervalli di confidenza bootstrap
- · Cenni alla verifica d'ipotesi in ambito bootstrap
- · Aspetti numerici e grafici per l'analisi di verosimiglianza

Prerequisiti

Non sono previste delle propedeuticità formali per questo corso, tuttavia è auspicabile una conoscenza di base dell'inferenza statistica, di calcolo delle probabilità e del linguaggio R.

Metodi didattici

L'intero corso si svolgerà in modo interattivo, attraverso lezioni frontali e in laboratorio in cui i concetti teorici verranno applicati e verificati attraverso esempi concreti di simulazione e utilizzo di algoritmi. Verranno offerti esercizi da risolvere a casa in preparazione alle domande dell'esame.

Modalità di verifica dell'apprendimento

Prova individuale sulla <u>Piattaforma Esami Informatizzati</u>, sarà richiesto di utilizzare R o RStudio e sarà prevista una integrazione scritta a mano su un foglio di carta.

Nella prova sono previste anche domande aperte, allo scopo di verificare la comprensione e rielaborazione dei contenuti del corso; la prova di laboratorio consta di esercizi computazionali volti alla verifica della padronanza computazionale delle tecniche apprese durante il corso.

Testi di riferimento

- Appunti delle lezioni a cura del docente del corso.
- Letture consigliate per integrare le lezioni:
- Robert, C.P. e Casella, G. (2009), Introducing Monte Carlo Methods with R, New York: Springer-Verlag
- Davison and Hinkley (1997). Bootstrap Methods and their Applications, Chapman and Hall.

Periodo di erogazione dell'insegnamento

Secondo semestre (III periodo).

Lingua di insegnamento

Italiano.

Sustainable Development Goals