

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Farmacoepidemiologia

2223-1-F8203B019

Obiettivi formativi

Il corso si propone di introdurre lo studente alla conoscenza dei principali disegni di studio e tecniche statistiche utilizzati nel campo della farmacoepidemiologia.

Conoscenza e comprensione

Questo Corso di Studio fornirà conoscenze e capacità di comprensione relativamente a:

- Processo di registrazione di un nuovo farmaco, principali tecniche di farmacovigilanza e studi postmarketing di fase IV per la valutazione dell'efficacia del farmaco dopo la sua immissione al commercio
- Principali disegni di studi osservazionali in ambito farmacoepidemiologico, e utilizzo degli archivi amministrativi sanitari
- Principali misure e indicatori utilizzati per valutare la farmacoutilizzazione
- Principali fonti di confondimento misurato, *detection bias*, e misclassificazione dell'esposizione (*time related bias*), insieme alle opportune tecniche per controllare tali *bias*
- Principali fonti di confondimento non misurato e le relative tecniche statistiche (approccio *rule-out*, etc.) e disegni di studio (*case-crossover*, etc.) per il controllo di tali fonti di confondimento

Capacità di applicare conoscenza e comprensione

Alla fine del Corso di Studio gli studenti saranno in grado di:

• Effettuare criticamente una ricerca nella letteratura scientifica

 Scegliere l'opportuno disegno di studio in funzione del quesito clinico/farmacoepidemiologico cui si vuole rispondere (impostare il protocollo di uno studio clinico sperimentale od osservazionale considerando le potenziali fonti di confondimento (misurato e non) e le tecniche/disegni da utilizzare per tenerle sotto controllo); oltre che interpretarne i risultati.

Contenuti sintetici

- Trials clinici e studi osservazionali
- Uso degli archivi elettronici sanitari e database cliici
- Aspetti legati al disegno dello studio
- Fonti di distorsione
- Approfondimenti: la farmacovigilanza, gli indicatori di farmacoutilizzazione, il detection bias, la misclassificazione dell'esposizione, e il confondimento misurato e non misurato

Programma esteso

- 1. Introduzione:
- Perché un approccio epidemiologico allo studio del rapporto tra uomo e farmaco?
- Insufficienza di trial clinici preregistrativi
- Insufficienza del sistema di sorveglianza basato sulle segnalazioni spontanee
- Inadeguatezza dei sistemi di monitoraggio attivo
- Il modello (farmaco)epidemiologico di riferimento
- Profili di farmacoutilizzazione e di rischio-beneficio
- Uso degli archivi elettronici sanitari in farmacoepidemiologia
- Database clinici vs. database amministrativi
- 2. Indicatori di farmacoutilizzazione
- Definizione di persistenza, aderenza, concomitanza, e switching
- 3. Farmacovigilanza
- misure di disproporzionalità
- 4. Detection bias
- definizione e tecniche per il controllo del detection bias
- 5. Misclassificazione dell'esposizione
- definizione e sensitivity analaysis per il controllo della misclassificazione
- 6. Time related bias
- · Immortal time bias
- Immeasurable time bias
- Time-window bias

- 7. Tecniche per il controllo del confondimento
- Riepilogo sulle tecniche per il controllo dei confondenti misurati (restrizione, appaiamaneto, stratificazione, regressione multivariate, propensity score)
- 8. Tecniche per il controllo del confondimento non misurato
- Approccio Rule-out
- · Monte-Carlo sensitivity analysis
- Propensity score calibration
- 9. Disegni per il controllo del confondimento non misurato (disegni case-only)
- case-crossover
- · case time control
- Self-controlled case-series

•

Prerequisiti

Nessun prerequisito

Metodi didattici

Il corso prevede lezioni frontali e alcune ora in laboratorio per lo svolgimento del lavoro a gruppi utile al fine della prova finale (per i frequentanti).

Solo in caso di **emergenza Covid-19** le lezioni si svolgeranno in modalità telematica (streaming e videoregistrazione). Lezioni videoregistrate verranno caricate nella pagina del corso attraverso la piattaforma e-learning.

Modalità di verifica dell'apprendimento

L'esame finale di verifica dell'apprendimento presenta delle distinzioni tra studenti frequentanti e studenti non frequentanti:

Studenti frequentanti

COLLOQUIO SULLA RELAZIONE DI LABORATORIO

L'esame consiste in (a) un lavoro di gruppo in cui verrà approfondito uno degli argomenti svolti a lezione tramite la lettura e l'analisi critica di un articolo scientifico che sarà presentato al docente; e (b) una prova orale finale composta da domande aperte per verificare l'apprendimento degli argomenti del corso

Studenti non frequentanti

COLLOQUIO SUGLI ARGOMENTI SVOLTI A LEZIONE

L'esame consiste in una prova orale finale durante la quale gli studenti verranno invitati a ragionare insieme al docente sui principali argomenti trattati durante il corso, con l'intento di verificare se hanno appreso i concetti

illustrati e raggiunto una adeguata capacità di maneggiare e possedere tali concetti.

Testi di riferimento

Tutto il materiale necessario al superamento della prova verrà caricato online nella piattaforma e-learning. Testo di riferimento:

Giovanni Corrao. Real world evidence. Buone pratiche della ricerca basata sull'osservazione del mondo reale. 2019, Il Pensiero Scientifico

Periodo di erogazione dell'insegnamento

II semestre, IV ciclo

Lingua di insegnamento

Italiano

Sustainable Development Goals

SALUTE E BENESSERE