

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Analisi, Controllo e Ottimizzazione di Sistemi Biologici

2223-1-F0802Q079

Obiettivi

Il corso si prefigge l'obiettivo di formare gli studenti all'analisi dei sistemi biologici nella loro accezione più generica e ampia (reti di reazioni biochimiche, reti metaboliche, reti di trascrizione, dinamiche di singole cellule o di popolazioni), di dare loro le basi per il controllo dei medesimi e i metodi di identificazione parametrica.

Conoscenza e capacita? di comprensione.

Al termine del corso gli studenti saranno in grado di ricavare informazioni di tipo quantitativo e qualitativo sul comportamento dei sistemi biologici attraverso l'analisi qualitativa e le simulazioni dei modelli matematici che li descrivono. Saranno anche dati gli strumenti per la simulazione numerica in MATLAB dei sistemi biologici studiati.

Capacita? di applicare conoscenza e comprensione.

Al termine dell'insegnamento gli studenti saranno in grado di applicare le metodologie acquisite a sistemi biologici complessi di varia natura, non necessariamente trattati a lezione

Autonomia di giudizio.

Gli studenti saranno in grado di rielaborare ed applicare le più opportune metodologie di analisi apprese, a seconda dei contesti biologici investigati

Abilita? comunicative.

Alla fine dell'insegnamento gli studenti sapranno esprimersi in modo appropriato nella descrizione delle tematiche affrontate con proprieta? di linguaggio e sicurezza di esposizione.

Capacita? di apprendimento.

Alla fine dell'insegnamento gli studenti sapranno analizzare, applicare, integrare e collegare le conoscenze acquisite – e successivamente maturate con la consultazione della letteratura - con quanto appreso in insegnamenti correlati, al fine di risolvere problemi scientifici nelle Scienze Biologiche e nelle Biotecnologie.

Contenuti sintetici

Questo corso fornisce metodologie di analisi, identificazione e controllo di modelli computazionali specifici dei sistemi biologici. Le metodologie possono suddividersi in 3 categorie principali: (i) analisi qualitativa (quali sono le proprietà emergenti di un sistema?); (ii) analisi quantitativa (come posso simulare il modello computazionale di un sistema biologico?); (iii) controllo (che meccanismi di controllo sono evidenti in natura? Che tipo di specifiche posso soddisfare in un sistema di controllo per sistemi biologici?).

Gli esempi del corso tratteranno diversi contesti biologici, tra cui le reti di trascrizione, le reti metaboliche, modelli di crescita e ciclo cellulare, modelli di diffusione di epidemie. La maggior parte degli argomenti verrano trattati mediante analisi approfondita di specifici casi di studio. Uno o più dei casi di studio verranno trattati anche nel corso di Systems Biochemistry che ne approfondirà le implicazioni biologiche, biochimiche e molecolari.

Programma esteso

- Definizione di Sistema. Insieme di relazioni ingresso/uscita: il sistema biologico caratterizzato dalla ricchezza degli esperimenti di laboratorio. Stato/ingresso/uscita di un sistema. Sistemi a tempo discreto e a tempo continuo. Sistemi deterministici e stocastici. Sistemi stazionari. Sistemi discreti e continui. Sistemi lineari. Modelli impliciti ed espliciti. Evoluzione libera e forzata. Regime e risposta transitoria.
- Analisi qualitativa del comportamento di un sistema. Punti di equilibrio, stabilità e multi-stabilità. Crescita esponenziale. Biforcazioni, oscillazioni e cicli limite. Comportamenti caotici. Esempi su modelli di reti di trascrizione, di reazioni enzimatiche, di crescita cellulare, di diffusione di epidemie.
- Identificazione di un sistema. Il problema della stima dei parametri di un modello. Minimi quadrati e minimi quadrati ricorsivi. Media e covarianza dell'errore di stima. Stima di minima varianza e di massima verosimiglianza. Indice di Akaike. Caso di studio: integrazione di dati cinetici, metabolici e proteomici per l'identificazione di una rete metabolica.
- Simulazione di modelli di sistemi biologici. Sistemi deterministici e fluttuazioni stocastiche: distribuzioni di
 probabilità e momenti del primo e secondo ordine per le Chemical Master Equations. Esempi su reti di
 trascrizione e di reazioni enzimatiche. Doppia scala dei tempi. Modelli basati su vincoli. Tutte le simulazioni
 verranno svolte in ambiente MATLAB.
- Controllo di sistemi biologici. Meccanismi di controllo a feedback esistenti in natura (autoregolazione negativa nelle reti di trascrizione, espressione ottima di geni, sistema di regolazione glucosio-insulina, ingegneria metabolica). Schemi di regolazione a feedback: applicazioni a reattori biochimici. Integrazione di dati in modelli basati su vicoli per identificare i punti di controllo di una rete metabolica.

Prerequisiti

Non sono richieste conoscenze specifiche di matematica differenti da quelle già acquisite nei corsi base di una Laurea triennale in Scienze Biologiche o in Biotecnologie.

Modalità didattica

Lezioni ed esercitazioni frontali in aula Sessioni interattive al computer per i casi studio trattati

Materiale didattico

Le slides delle lezioni e delle esercitazioni saranno disponibili sulla pagina e-learning dell'insegnamento, così come i programmi in MATLAB realizzati a lezione. Articoli specialistici e di rassegna e capitoli di libro verranno consigliati a lezione e caricati sulla piattaforma e-learning del corso

I seguenti testi sono consigliati per opportuni approfondimenti:

- U. Alon, An introduction to systems biology: design principles of biological circuits, Chapman & Hall/CRC, Taylor & Francis Group, 2019
- E. Klipp, W. Liebermeister, C. Wierling, A. Kowald, Systems Biology A textbook. 2nd Ed. Wiley, 2016

Periodo di erogazione dell'insegnamento

Secondo semestre

Modalità di verifica del profitto e valutazione

Lo studente verrà valutato sulla presentazione di un articolo scientifico precedentemente assegnatogli + domande orali su tutto il programma svolto a lezione

Orario di ricevimento

Gli studenti sono invitati a contattare il docente per email per accordarsi su data e giorno (eventualmente via WebEx)

Sustainable Development Goals

SALUTE E BENESSERE