

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Chimica Fisica Superiore - Modulo 2

2223-1-F5401Q027-M2

Obiettivi

Obiettivo del corso è di fornire agli studenti un'introduzione alla meccanica statistica e alle sue applicazioni in campo chimico.

Conoscenze e capacità di comprensione acquisite

- Metodologie di analisi statistica di sistemi a molte particelle
- Procedure per il calcolo delle grandezze termodinamiche a partire da modelli microscopici di sistemi a molte particelle
- Strumenti matematici di base per il calcolo della funzione di partizione
- Metodologie idonee alla descrizione approssimata di sistemi interagenti classici e quantistici

Conoscenze e capacità di comprensione applicative acquisite

- Determinazione delle equazioni di stato e dei potenziali termodinamici di sistemi di interesse chimico
- Valutazione del limite di applicabilità dell'approssimazione classica in sistemi di interesse chimico

Autonomia di giudizio acquisita

- Valutazione dell'appropriatezza delle tecniche di calcolo numerico utilizzate in codici di simulazione commerciali
- · Capacità di analisi critica delle procedure di costruzione assiomatica di teorie scientifiche

Abilità comunicative

Uso rigoroso del linguaggio naturale in ambito scientifico

Capacità di apprendere

Attivazione di competenze critiche nell'analisi di modelli scientifici

Contenuti sintetici

Insiemi statistici e spazio delle fasi. Distribuzioni di densità degli stati. Principio di eguale probabilità a priori. Condizioni di equilibrio statistico. Teorema di Liouville. Teorema H. Insiemi microcanonici, canonici e gran-canonici. Funzione di partizione. Il gas perfetto monoatomico classico e quantistico.

Programma esteso

Rappresentazione lagrangiana dell'equazione del moto. Momenti generalizzati e equazione canonica del moto. Insiemi statistici e spazio delle fasi. Distribuzioni di densità degli stati.. Principio di eguale probabilità a priori. Teorema di Liouville. Condizioni di equilibrio statistico. Insiemi microcanonici, canonici e gran-canonici. La legge di distribuzione di Maxwell-Boltzmann in un insieme microcanonico. Il principio di equipartizione. Il teorema H di Boltzmann. Applicazioni della meccanica statistica: insiemi di particelle libere; insiemi di particelle confinate; particelle in un campo di forze armonico; insiemi di particelle dotate di spin. Applicazioni a sistemi termodinamici di rilievo chimico: il gas perfetto monoatomico; miscele perfette di gas; gas non ideali. Cenni alle distribuzioni quantistiche di Bose-Einstein e di Fermi-Dirac.

Prerequisiti

Termodinamica classica, calcolo di funzioni a più variabili, conoscenza elementare dei fondamenti della meccanica quantistica.

Modalità didattica

L'insegnamento è ripartito in due moduli, erogati da Claudio Greco (meccanica quantistica) e da Dario Narducci (meccanica statistica).

Il modulo di meccanica statistica prevede lezioni frontali.

Il modulo sarà tenuto in lingua italiana se non saranno presenti studenti Erasmus; in inglese in caso contrario.

Materiale didattico

Narducci, Dario, *Introduzione alla meccanica statistica: un approccio assiomatico elementare*, UnicaPress, Cagliari, 2020. Disponibile gratuitamente online:

Reif, Frederick, Fundamentals of statistical and thermal physics, McGraw-Hill, 1965 e Waveland Press, 2009

Periodo di erogazione dell'insegnamento

Primo anno, primo semestre

Modalità di verifica del profitto e valutazione

Esame orale. Lo studente può, a sua richiesta, sostenere prove separate sui due moduli. Non sono previste prove intermedie.

Il colloquio orale del modulo di meccanica statistica è volto a verificare il livello delle conoscenze acquisite, la comprensione dei principali snodi concettuali nello sviluppo della teoria presentata durante il corso ed il corretto uso del linguaggio da parte dell'esaminando/a.

Orario di ricevimento

Su appuntamento.

Sustainable Development Goals