

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

General Physiology II

2324-2-H4102D010-H4102D031M

Obiettivi

Il corso si propone di fornire conoscenze sulle funzioni cellulari che sono alla base della fisiologia dei sistemi. Al termine del corso, lo studente sarà in grado di comprendere le modalità con cui una cellula può svolgere le sue funzioni vitali per garantire l'omeostasi del tessuto al quale appartiene grazie ai suoi meccanismi di base. Lo studente sarà in grado di utilizzare tale conoscenza per l'interpretazione dei segni e sintomi fisiopatologici, come punto di partenza per lo studio della fisiologia dei singoli sistemi successivamente trattati nei vertical tracks.

Contenuti sintetici

Il corso si basa sulla presentazione sistematica di concetti fisiologici alla base delle funzioni del corpo umano. La sequenza di eventi che porta ad uno squilibrio della funzione non può essere apprezzato senza una profonda comprensione dei meccanismi biofisici e fisiologici di base. Pertanto, verranno presentati tali meccanismi che garantiscono le funzioni a livello cellulare e tissutale. Si analizzerà l'eccitabilità cellulare neuronale, la fisiologia dei sistemi sensoriali, il controllo motorio, la contrazione muscolare, la funzionalità cardiaca e respiratoria.

Programma esteso

Fisiologia delle barriere biologiche.

Struttura e funzione della barriere emato-encefalica e emato-aerea. Permeabilità transcellulare e paracellulare. Misura della resistenza trans-endoteliale in modelli in vitro.

Eccitabilità cellulare e neurotrasmissione. Integrazione dei segnali elettrici. Sinapsi.

Potenziale di riposo di membrane; genesi e propagazione del potenziale d'azione, EPSP e IPSP, trasmissione sinaptica. LTP e LTD.

Attività elettrica neuronale (introduzione all'EEG).

Introduzione all'elettrofisiologia del cervello. Correnti sinaptiche e volume di conduzione. Origine dell'EEG. "Sources" cellulare. Tipi di attività ritmiche rilevabili all'EEG. Fenomenologia e significato funzionale del sonno (definizione all'EEG).

Unità sensoriali e motorie. Trasduzione e codifica del segnale.

Descrizione delle risposte mediate dai recettori sensoriali – codifica del tipo di stimolo, la sua intensità, durata e posizione.

Definizione della percezione del dolore – nocicettori: distribuzione anatomica, meccanismi di attivazione e sensitizzazione.

Emodinamica.

Organizzazione ed emodinamica del sistema circolatorio. Arterie, arteriole, capillari, venule e vene. Sistema linfatico. Emostasi e coagulazione.

Elementi di Fisiologia dell'apparato Respiratorio. Ventilazione e meccanica respiratoria. Scambi gassosi, diffusione e legge di Fick.

Prerequisiti

Solide conoscenze di anatomia, biologia, genetica e fisica

Modalità didattica

I metodi di insegnamento includeranno lezioni frontali, video e discussioni in classe.

Al momento è previsto che gli insegnamenti verranno erogati in modalità "in presenza", salvo successive diverse disposizioni ministeriali legate all'emergenza pandemica nel qual caso gli insegnamenti verranno erogati in modalità mista da remoto asincrono con eventi in videoconferenza sincrona (WEBEX)

Materiale didattico

- E. R. Kandel, J. H. Schwartz, T. M. Jessel, S. A. Siegelbaum, A. J. Hudspeth, Principles of neural science, Mc Graw Hill Medical
- Dale Purves, George J. Augustine, David Fitzpatrick, William C. Hall, Anthony-Samuel LaMantia, Richard D. Mooney, Michael L. Platt, Neuroscience (6th Edition) eBook Sinauer Associates (Oxford University Press); 6th edition

- Susan E. Mulroney, Adam Myers, Netter's Essential Physiology, Elsevier

Periodo di erogazione dell'insegnamento

Primo Semestre

Modalità di verifica del profitto e valutazione

Non saranno presenti prove in itinere. L'esame prevede una prova scritta. Allo studente verranno poste domande aperte per valutare il livello di conoscenza generale degli argomenti, quesiti che richiedono l'analisi di un fenomeno complesso, la sua razionalizzazione e l'applicazione di principi specifici della fisiologia. Risoluzione di semplici esercizi. Infine, potrà essere presentata la descrizione di una situazione di cui verrà richiesta l'analisi delle interconnessioni tra diverse variabili fisiologiche alla luce dei paradigmi teorici.

Gli esami scritti da remoto, in caso di restrizioni dovute alla pandemia, saranno erogati dalla piattaforma https://esamionline.elearning.unimib.it, il cui accesso verra' attivato per la data e orario dell'esame.

Orario di ricevimento

Il docente ricevono su appuntamento previo accordo via e-mail.

Sustainable Development Goals

SALUTE E BENESSERE | ISTRUZIONE DI QUALITÁ | PARITÁ DI GENERE