

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Physics I

2324-1-E3002Q006

Area di apprendimento

Obiettivi formativi

Obiettivi dell'insegnamento di Fisica I sono:

- acquisire familiarità con grandezze fisiche, concetti, unità di misura e leggi della meccanica classica
- imparare il processo di costruzione di una legge fisica a partire dagli esperimenti
- comprendere il nesso tra fenomeno fisico e formalismo usato per descriverlo, in particolare per la meccanica delle onde

Contenuti sintetici

Cinematica. Le principali grandezze, descrizione dei principali tipi di moto.

Dinamica del punto materiale e del corpo rigido. Forze, lavoro, energia. Conservazione dell'energia meccanica. Conservazione del momento angolare. Equazioni cardinali.

Oscillazioni e onde. Funzione d'onda in una dimensione; equazione delle onde; interferenza, onde stazionarie, il suono.

Fluidi. Principali leggi.

Programma esteso

Introduzione. La legge fisica e il procedimento per giungere ad una teoria; grandezze fisiche; grandezze

fondamentali e derivate; unità di misura; equazioni dimensionali.

Cinematica. Posizione e spostamento; grandezze vettoriali; operazioni di somma e differenza tra vettori. Traiettoria e legge oraria; velocità media e velocità istantanea. Moto rettilineo uniforme. Accelerazione media e istantanea; moto uniformemente accelerato; caduta di un grave. Lancio di un grave verso l'alto; moto parabolico. Moto circolare uniforme: vettori posizione, velocità tangenziale e acclerazione centripeta. Velocità e accelerazione angolari. Velocità angolare vettoriale, con v=?×r. Prodotto vettoriale: definizione, significato e proprietà. Moto armonico.

Dinamica del punto materiale. I principi di Newton: massa e forza. La forza peso. Oggetto su un piano e reazione vincolare. Piano inclinato; corpo sospeso; pendolo semplice. Forza elastica e oscillatore armonico libero. Attrito statico e dinamico. Attrito viscoso e velocità limite. Definizione di lavoro compiuto da una forza; prodotto scalare: definizione, significato e proprietà. Lavoro compiuto da una forza elastica e dalla forza peso. Energia cinetica; teorema lavoro-energia cinetica. Lavoro, potenza, energia cinetica. Forze e sistemi conservativi. Energia potenziale e conservazione dell'energia meccanica; esempi: la forza peso e la forza elastica. Energia potenziale ed equilibrio. Forze e sistemi non conservativi e conservazione dell'energia nel caso generale. Forze centrali e loro conservatività. Legge di gravitazione universale, energia potenziale gravitazionale. Cenni al concetto di campo e campo gravitazionale.

Dinamica dei sistemi e corpo rigido. Centro di massa: posizione, velocità, accelerazione. Moto del centro di massa e prima equazione cardinale della dinamica. Impulso di una forza e quantità di moto; conservazione della quantità di moto. Urti: urti unidimensionali elastici e anelastici; urti in due e tre dimensioni. Il pendolo balistico. Definizioni di corpo rigido e momento di una forza. Baricentro e centro di massa. Equilibrio traslazionale e rotazionale di un corpo. Energia cinetica di rotazione e momento di inerzia di un corpo rigido. Teorema di Hyugens-Steiner (enunciato). Energia cinetica totale per un corpo che trasla e ruota. Corpo rigido che rotola. Momento angolare di un punto materiale; momento angolare totale e rotazione di un corpo rigido. Conservazione del momento angolare. Equazioni cardinali. Lavoro compiuto durante la rotazione e teorema lavoro-energia per la rotazione.

Oscillazioni e onde. Impulsi e onde: caratteristiche generali e rappresentazione; funzione d'onda. Onde longitudinali e trasversali. Equazione di D'Alembert. Onde armoniche ed equazione di D'Alembert per le onde armoniche. Interferenza di onde armoniche; gruppo e pacchetto d'onde (cenni); onde stazionarie. Il suono: caratteristiche generali; i caratteri del suono.

Fluidi. Principi di Stevino; legge di Pascal; legge di Archimede. Portata e flusso laminare; teorema di Bernoulli.

Prerequisiti

Indispensabile per poter affrontare le lezioni e lo studio dei contenuti è una solida preparazione di base in matematica. Si intende che siano acquisiti concetti e tecniche dell'algebra elementare e della trigonometria, più argomenti di analisi matematica (a livello di scuola media superiore o dell'insegnamento di Istituzioni di matematica I, tenuto nel I semestre).

Metodi didattici

Lezioni frontali e esercitazioni svolte in italiano.

Modalità di verifica dell'apprendimento

Prova scritta, di durata di 2 ore, è costituita da una parte che consiste in test a risposte chiuse con scelta a risposta multipla) e una parte che consiste in esercizi in cui si richiede di rispondere a semplici quesiti che richiedono l'applicazione di specifici principi o teoremi. Occorre raggiungere i valori di soglia per i punteggi delle due parti, cioè 50/60 per i quesiti e 6/10 per gli esercizi, per aver accesso alla prova orale. Esempi di quesiti ed esercizi come quelli della prova scritta vengono presentati e discussi durante le lezioni come ripasso periodico delle varie parti del programma svolto. Obiettivo nella valutazione dell'apprendimento è il controllo estensivo della preparazione sul programma e delle competenze di problem solving disciplinare.

Prova orale su tutto il programma a controllo intensivo delle capacità di riflessione autonoma su punti critici del programma. E' possibile sostenere la prova orale nello stesso appello in cui si è superata la prova scritta o in quello immediatamente successivo; ulteriori ritardi annullano l'esito della prova scritta, che va quindi affrontata e superata di nuovo.

Su richiesta dello studente, l'esame potrà essere sostenuto in lingua inglese.

L'esito della prova scritta e il calendario delle prove orali sono pubblicati sulla **pagina e-learning** dell'insegnamento.

Testi di riferimento

Un testo universitario che tratti la meccanica classica può essere adatto a preparare l'esame, ma si consiglia di verificare con la docente; un testo del livello di approfondimento adeguato è: P. Mazzoldi, M. Nigro, C. Voci , Elementi di Fisica, meccanica e termodinamica (Edises Università).

Sustainable Development Goals