

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Biochimica Cellulare

2324-3-E0201Q063

Obiettivi

L'insegnamento si propone di approfondire argomenti e problematiche relative ai sistemi biochimici integrati in cellule di eucarioti. Vengono trattati i principali meccanismi riguardanti le vie di trasduzione del segnale e la regolazione della crescita e del ciclo cellulare. Gli argomenti sono approfonditi anche mediante letteratura originale (articoli scientifici e "reviews") segnalata e discussa durante l'insegnamento.

L'insegnamento si propone di approfondire argomenti e problematiche relative ai sistemi biochimici integrati in cellule di eucarioti. Vengono trattati i principali meccanismi riguardanti le la regolazione della crescita, del ciclo cellulare e del metabolismo. Gli argomenti sono approfonditi anche mediante letteratura originale (articoli scientifici e "reviews") segnalata e discussa durante l'insegnamento.

- 1. Conoscenza e capacità di comprensione al termine dell'insegnamento lo studente avrà acquisito conoscenze riguardo ai meccanismi di regolazione del ciclo cellulare, della proliferazione e del metabolismo, processi essenziali per la crescita delle cellule di eucarioti.
- 2. Capacità di applicare conoscenza e comprensione al termine dell'insegnamento lo studente dovrà essere in grado di utilizzare le conoscenze acquisite per comprendere la regolazione della crescita cellulare dei sistemi eucarioti
- Autonomia di giudizio al termine dell'insegnamento, lo studente sarà in grado di comprendere i diversi processi cellulari descritti ed identificare i punti centrali di regolazione e le conseguenze di un loro malfunzionamento.
- 4. Abilità comunicative alla fine dell'insegnamento lo studente avrà acquisito una terminologia scientifica adeguata e saprà esporre con proprietà di linguaggio gli argomenti trattati nell'insegnamento.
- 5. Capacità di apprendimento alla fine dell'insegnamento lo studente sarà in grado di comprendere e valutare criticamente la letteratura scientifica riguardante la biochimica cellulare.

Contenuti sintetici

The regulation of cell cycle transitions; the key components of the cell cycle: the cyclins, the cyclin-dependent kinase complexes (CdK), their activation and inhibition during the events of cell division; the role of the Cdk inhibitors; the control of proteolysis during cell cycle and the degradation of cell-cycle regulatory proteins mediated by the ubiquitin-proteasome pathway; the transcription regulation in G1 phase; the control of G1/S transition and the onset of S-phase; mitosis and cytokinesis.

The control of proliferation and cellular metabolism: the kinases TORC1 (target-of- rapamycin) and AMPK (AMP-protein kinase); autophagy: a key player in cellular metabolism; selective autophagy of intracellular organelles.

Programma esteso

Introduzione del corso.

Il sistema di controllo del ciclo cellulare nelle tre principali transizioni: restriction point in G1, transizione G2/M e transizione metafase-anafase. Le chinasi ciclina-dipendenti (Cdks) e i loro principali regolatori: le cicline delle fasi G1, S ed M. Stimolazione da parte dei fattori di crescita e dei nutrienti delle attività G1-Cdk e G1/S-Cdk. La regolazione dell'attività delle Cdk mediante fosforilazioni inibitorie e proteine inibitrici di Cdk (Ckis) appartenenti alle famiglie INK e CIP. Retinoblastoma, proteine pocket, fattori di trascrizione E2F e la regolazione trascrizionale in G1. Il controllo della proteolisi da parte dei complessi SCF (Skp1-Cullin-F-box protein) e APC/C (anaphase-promoting factor) durante il ciclo cellulare. Ubiquitinazione e attività del proteasoma durante il ciclo cellulare. La regolazione dell'attività del complesso M-Cdk: il ruolo della chinasi Cdk-attivante (CAK), della chinasi Cdk-inibitrice (Wee) e della fosfatasi Cdc25. Mitosi e citochinesi.

Il coordinamento tra divisione e crescita cellulare. Il ruolo della chinasi TORC1 (target-of-rapamycin) nella stimolazione dei processi metabolici inclusa la sintesi proteica. AMPK (AMP-protein kinase): regolatore dell'omeostasi energetica cellulare. Il meccanismo molecolare dell'autofagia: un regolatore chiave nel metabolismo cellulare. Il ruolo di AMPK e TORC1 nella regolazione dell'autofagia. Autofagia selettiva degli organelli intracellulari. Il ruolo dell'autofagia in condizioni patologiche.

Prerequisiti

Sono necessarie conoscenze di base di biochimica e di metodologie biochimiche e biomolecolari. Propedeuticità specifiche: Biochimica.

Propedeuticità generali: Lo studente può sostenere gli esami del terzo anno dopo aver superato tutti gli esami del primo anno di corso.

Modalità didattica

Lezioni frontali in aula con il supporto di presentazioni powerpoint sugli argomenti svolti.

L'insegnamento è tenuto in lingua italiana.

Materiale didattico

Il materiale presentato durante le lezioni (powerpoint presentations e articoli scientifici discussi in classe) è disponibile alla pagina e-learning dell'insegnamento.

Libri di testo suggeriti:

- Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD "Molecular biology of the cell" Garland Publishing, Inc.
- Voet D, Voet JD, Pratt CW "Fondamenti di biochimica" Zanichelli

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

Esame orale. La prova ha una durata di circa 30 minuti con 3-4 domande, con le quali sono valutate sia le conoscenze dei contenuti dell'insegnamento sia la capacità dello studente di collegare le diverse tematiche trattate.

Orario di ricevimento

Ricevimento: su appuntamento, previa e-mail al docente: paola.coccetti@unimib.it.

Sustainable Development Goals

SALUTE E BENESSERE | ISTRUZIONE DI QUALITÁ