

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Modelli Statistici per la Genetica

2324-1-F8203B017

Obiettivi formativi

Il corso si propone di fornire le conoscenze di base per un approccio statistico rigoroso nel mappaggio e nell'identificazione di loci implicati in patologie o caratteri nell'uomo. Alla fine del corso, lo studente avrà appreso gli elementi fondamentali per comprendere e utilizzare strumenti di base di statistica genetica e metodi di epidemiologia genetica. Inoltre, sarà in grado di leggere criticamente un articolo scientifico e interpretare i risultati derivanti da analisi statistiche di dati genetici. Un ulteriore obiettivo del corso è quello di fornire le competenze necessarie per analizzare dati provenienti da analisi in ambito OMICO, permettendo agli studenti di gestire e interpretare complessi dataset genomici.

Contenuti sintetici

Mendel vs Malattie complesse: Confronto tra ereditarietà semplice e malattie influenzate da geni multipli e ambiente.

Analisi di segregazione: Studio dei pattern genetici nelle famiglie.

Linkage parametrico e non parametrico: Identificazione di regioni genomiche usando dati di famiglie o popolazioni. Associazione genetica: Identificazione di varianti genetiche tramite studi caso-controllo.

Campionaria e potenza: Numero di campioni per rilevare associazioni genetiche significative.

GWAS ed EWAS: Studi su larga scala per trovare varianti genetiche o epigenetiche associate a tratti o malattie.

Programma esteso

- Mendel e le Malattie genetiche complesse
- Equilibrio di Hardy-Weinberg
- Fattori che "complicano" l'identificazione del tipo di ereditarietà

- · Analisi di segregazione
- Analisi di linkage: fondamenti teorici e strategie
- Strategie per il mappaggio genetico di patologie mendeliane e di tratti complessi.
- Analisi di linkage parametrico e non parametrico: metodi per identificare regioni genomiche associate a tratti genetici utilizzando informazioni di famiglie (parametrico) o popolazioni (non parametrico: Loss of Heterozygosity, Homozygosity Haplotype Analysis.).
- · Analisi di associazione genetica
- Linkage disequilibrium: concetti e applicazioni.
- Studi caso-controllo: metodologie e analisi.
- Studi familiari: TDT (Transmission Disequilibrium Test).
- Analisi genome-wide in ambito genetico (GWAS) ed epigenetico (EWAS): Disegno e Progettazione
- · Analisi genome-wide in ambito genetico (GWAS) ed epigenetico (EWAS): Controllo di qualità
- Analisi genome-wide in ambito genetico (GWAS) ed epigenetico (EWAS): Analisi di associazione

Prerequisiti

Nessuno

Metodi didattici

Il corso è organizzato in lezioni frontali ed esercitazioni con software ad hoc mirate tanto all'applicazione dei concetti teorici presentati su set di dati sperimentali, quanto all'interpretazione/comprensione delle evidenze scientifiche derivanti da una corretta applicazione delle tecniche statistiche.

Modalità di verifica dell'apprendimento

Prova scritta (16 domande tra cui esercizi, domande a risposta multipla e domande aperte sui temi svolti a lezione con l'obiettivo di valutare la preparazione sul programma d'esame e la capacità di riflessione autonoma sui punti critici del programma).

Prova Orale facoltativa su richiesta dello studente o del docente (Colloquio sugli argomenti svolti a lezione e sui testi d'esame)

Lo studente deve dimostrare non solo di saper ragionare su quali sono le tecniche di analisi corrette, ma di saper interpretare i risultati ottenuti e comunicare in modo scientificamente corretto le evidenze riscontrate (problem solving).

Testi di riferimento

Articoli Scientifici ad hoc forniti durante il corso

Periodo di erogazione dell'insegnamento

secondo semestre, quarto ciclo

Lingua di insegnamento

Italiano

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ