

# UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

### **COURSE SYLLABUS**

# **Introduction To Time Series Analysis M**

2324-1-F8204B012

#### Obiettivi formativi

Il corso si pone due obiettivi: 1) introdurre gli studenti i fondamenti su modelli lineari, regressione e metodi econometrici per serie storiche economiche; 2) introdurre gli studenti all'analisi delle serie storiche univariate con metodi 'classici'. In particolare, il corso affronterà i temi dell'analisi esplorativa per dati temporali, identificazione delle componenti (trend, stagionalità, ciclo e break strutturali), processi stocastici, modelli SARIMA e modelli di regressione per dati temporali. I metodi affrontati verranno utilizzati in applicazione con dati reali a fini sia previsivi, sia interpretativi dei fenomeni economici e delle loro dinamiche.

#### Contenuti sintetici

I contenuti sintetici (macro-temi) del corso sono i seguenti:

- Intuzioni e concetti chiave sulle serie storiche economiche
- Introduzione ai processi stocastici per dati temporali
- Introduzione ai modelli di regressione lineare (assunzioni, metodi di stima) con particolare enfasi sui dati temporali
- Analisi esplorativa (EDA) per dati temporali
- Componenti delle serie storiche e decomposizione
- Modelli SARIMA

#### Programma esteso

I contenuti dettagliati del corso sono i seguenti:

- Intuzioni e concetti chiave sulle serie storiche economiche (tassonomia dei concetti di serie storiche, componenti osservabili e non osservabili)
- Richiami sui modelli lineari e regressione lineare (Teorema di Gauss-Markov, stima dei parametri con OLSE/MLE, test diagnostici e violazione delle ipotesi)
- Introduzione ai processi stocastici (definizione, proprietà ed esempi) e richiami di probabilità per le serie storiche: funzioni di autocovarianza e autocorrelazione
- Analisi esplorativa (EDA) per serie storiche: analisi grafica, indici e test sulle caratteristiche dei dati, analisi del trend (modelli lineari parametrici e non parametrici), analisi della stagionalità (regressione armonica), trasformazione di Box-Cox e eteroschedasticità nelle serie storiche
- Stazionarietà, radici unitarie, test ADF, differenziazione
- Decomposizione classica delle serie storiche: modelli additivi e moltiplicativi
- Teorema di Wold e genesi di processi AR, MA e ARMA
- Processi stazionari e modelli ARMA: identificazione, stima dei parametri, test diagnostici, teoria della previsione
- Processi integrati e modelli ARIMA
- Processi stagionali e modelli SARIMA
- Modelli di regressione lineare con errori ARIMA (regARIMA)

#### Prerequisiti

Non ci sono propedeuticità formali, ma è richiesto che lo studente abbia una minima conoscenza di statistica descrittiva, calcolo delle probabilità (variabili casuali) e algebra lineare (calcolo matriciale).

#### Metodi didattici

- Didattica frontale per i contenuti teorici
- Laboratorio con software statistico R per l'analisi di casi studio reali

#### Modalità di verifica dell'apprendimento

Gli studenti saranno valutati tramite:

- 1. Elaborazione di un progetto individuale che copre la maggior parte degli argomenti affrontati nel corso. Il caso studio su dati empirici reali deve essere concordato con il docente;
- 2. Assignment individuale in cui ogni studente deve rispondere a 2 domande teoriche estratte da un pool. Le domande saranno svolte senza supervisione (a casa) e saranno poi commentate al momento della prova orale:
- 3. Prova orale in cui verrà esposto il progetto, le domande dell'assignment e ulteriori domande sui contenuti affrontati nel corso.

#### Testi di riferimento

• Slides e materiali del docente

- Libro per le applicazioni: 'Forecasting: Principles and Practice (2nd/3rd ed)' di Rob J Hyndman and George Athanasopoulos (disponibile online)
- Libro per la teoria: 'Time Series Analysis and Its Applications with R (4th Ed)' di Shumway & Stoffer, 2017

# Periodo di erogazione dell'insegnamento

I semestre, II ciclo

# Lingua di insegnamento

Italiano

# **Sustainable Development Goals**

ISTRUZIONE DI QUALITÁ