

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Fondamenti di Geografia Fisica Marina

2324-1-F7401Q099

Obiettivi

Il corso prevede di fornire agli studenti conoscenze in merito ai principali processi che generano e modellano le differenti forme del rilievo costiero e sommerso, e che ne controllano l'evoluzione nel tempo a breve, medio e lungo termine. Ulteriore obiettivo è quello di sviluppare capacità pratiche in merito alle tecniche di rilevamento geomorfologico di aree sommerse e alla realizzazione di cartografie tematiche per l'ambiente marino.

Contenuti sintetici

- Metodi di ricerca in geomorfologia sottomarina: mappatura dei fondali, campionamento e ispezioni visive: strumenti e pianificazione delle indagini.
- Forme costiere e processi: spiaggie e dune, delta ed estuari. Coste rocciose e scogliere coralline.
- Le forme del rilievo sommerso e processi associati: processi geomorfici in ambiente sommerso (tettonica, sedimentologia, oceanografia e biologia). Piattaforme continentali, frane sottomarine, canyon, sistemi canali e argini delle conoidi sottomarine, contouriti, dorsali oceaniche, strutture derivate dalla risaliti di fluidi e gas dal fondo, piane abissali, fosse oceaniche e biocostruzioni.

Programma esteso

Lezioni frontali (4 CFU - 28 ore):

Introduzione: Geografia fisica marina, oceanografia e geomorfologia marina.

Metodi di ricerca in geomorfologia sottomarina. Mappatura dei fondali, tecniche di campionamento e ispezioni visive: strumenti e pianificazione delle indagini.

Geomorfologia dei fondali oceanici. La mappa globale dei fondali oceanici e classificazione delle forme a grandi scala (margini continentali, isole oceaniche e vulcani sottomarini, dorsali oceaniche, piane abissali e fosse oceaniche).

Processi geomorfici in ambiente sottomarino e costiero. Venti e circolazione oceanica (effetti sulle forme costiere e sottomarine), onde e maree. Cambiamenti del livello del mare (indicatori geomorfologici). Processi sedimentari in ambiente sommerso, ambienti di sedimentazione e morfologie associate: Morfologie della piattaforma continentale, contouriti, onde di sedimento e strutture sedimentarie generate dall'azione delle correnti di fondo, processi di risedimentazione (frane sottomarine e flussi torbiditici), canyon sottomarini e solchi d'erosione, sistemi arginicanale delle conoidi sottomarine. Strutture legate alla risalita di gas e fluidi dal fondo.

I sistemi costieri: Terminologie e classificazione dei sistemi costieri. Delta, estuari e spiaggie. Coste rocciose e scogliere coralline.

Laboratorio (2 CFU - 24 ore):

Rilevamento geomorfologico in ambiente sommerso: tecniche di implementazione di dati geospazioali marini in sistemi geografici informatizzatizzati (GIS)

Laboratorio (2 CFU - 24 ore)

Attività pratiche di installazione strumentazione geofisica per rilievi in mare: ecoscandaglio singolo fascio, ecoscandaglio multifascio, Veicolo subacqueo pilotato da remoto.

Esercitazioni pratiche sull'interpretazione di dati di sismica a riflessione

Prerequisiti

Fondamenti di matematica, fisica e chimica.

Modalità didattica

- Lezioni frontali: 4 CFU

- Esercitazioni: 2 CFU

- Laboratorio: 2 CFU

Materiale didattico

Alan P. Trujillo & Harold V. Thurman. Essential of Oceanography. Pearson

Micallef A., Krastel S., Savini A. Submarine Geomorphology. Springer D.A.V. Stow, H.G. Reading, Collinson J.D – Deep Seas. In: H.G. Reading, Sedimentary environment: Processes, Facies and Stratigraphy (Cap. 10). Blackwell Science.

NC Mithcell. Submarine Geomorphology. Elsevier

G. Masselink & Hughes M.G. An introduction to coastal processes and geomorphology. Cambridge

Sarà cura del docente indicare una selezione di articoli scientifici per favorire l'approfondimento delle tematiche affrontate.

Periodo di erogazione dell'insegnamento

Primo Semestre

Modalità di verifica del profitto e valutazione

Esame scritto e orale

La prova scritta consisterà in un questionario di 60 domande con risposta a scelta multipla focalizzato sugli argomenti trattati durante le lezioni orali.

La prova orale consisterà in una breve discussione su una carta tematica o un profilo sismico o un'elaborazione grafica di un dato acquisito tramite strumentazione geofisica acustica, per verificare l'apprendimento in merito alle tecniche di esplorazione e rilevamento geomorfologico in mare.

Entrambe le prove verranno svolte lo stesso giorno.

Orario di ricevimento

Per fissare un appuntamento contattare il docente via mail:

alessandra.savini@unimib.it

Sustainable Development Goals

IMPRESE, INNOVAZIONE E INFRASTRUTTURE | VITA SOTT'ACQUA