

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Teoria dell'Informazione e Crittografia

2324-1-F1801Q122

Obiettivi

Comprensione dei principi di funzionamento dei codici per la correzione d'errore, e di alcune semplici tecniche di compressione dati lossless (senza perdita di informazione). Capacità di capire il funzionamento di un crittosistema o di un protocollo crittografico. Capacità di scegliere gli strumenti crittografici adatti per proteggere i dati durante la loro trasmissione e/o memorizzazione.

Contenuti sintetici

Nozioni e concetti alla base della Teoria dell'Informazione, della Teoria dei Codici e della Crittografia moderna. Il corso fornisce inoltre gli strumenti concettuali e teorici che consentono di comprendere le tecniche avanzate attualmente utilizzate per proteggere la trasmissione e la memorizzazione di informazioni in presenza di agenti ostili o di rumore nel canale.

Programma esteso

- 1. Codici per la correzione degli errori:
- Definizione di sorgente, canale, codifica
- Codici per il riconoscimento di errori. Controlli di parità
- · Codici a correzione d'errore. Approccio geometrico e approccio algebrico. Codici di Hamming
- 3. Codifica di sorgente:
- Codici istantanei e loro costruzione

- Disuguaglianze di Kraft e di McMillan
- Codici di Huffman
- 5. L'entropia:
- Definizione e proprietà matematiche
- Codici di Shannon-Fano
- Primo teorema di Shannon
- 7. Il canale rumoroso:
- Definizione di canale, entropie di canale e mutua informazione
- · Capacità di canale
- Il canale binario simmetrico
- Secondo teorema di Shannon
- 9. Introduzione alla Crittografia:
- Definizione di crittosistema
- Modelli di attacco
- Crittosistemi storici, e loro crittoanalisi
- 11. Crittosistemi simmetrici:
 - Crittosistemi standard: DES, 3DES e AES
- Modi di funzionamento dei crittosistemi simmetrici
- 13. Fondamenti teorici dei crittosistemi simmetrici:
 - Confusione e diffusione
 - Reti di permutazione e sostituzione
 - Struttura di Feistel
- 15. Crittosistemi a chiave pubblica:
 - Funzioni one-way: logaritmi discreti e il problema della fattorizzazione
 - Protocollo di Diffie-Hellman. Il crittosistema ElGamal. Crittosistemi ibridi
 - Il crittosistema RSA. Alcuni semplici attacchi ad RSA. RSA randomizzato
- 17. Generatori di numeri pseudo-casuali
- 18. Schemi di firma digitale
- 19. Funzioni di hash crittografiche

Prerequisiti

Argomenti trattati nei corsi di matematica della laurea triennale in Informatica. È utile - ma non indispensabile - la conoscenza di alcune nozioni di base di informatica teorica (in particolare, macchine di Turing).

Modalità didattica

Lezioni ed esercitazioni in aula.

La lingua di erogazione prevista è l'Italiano. Tuttavia, lezioni ed esercitazioni potranno essere erogate in Inglese se si verifica almeno una delle seguenti condizioni:

- in aula c'è almeno uno studente straniero che non parla Italiano;
- gli studenti fanno richiesta di seguire lezioni ed esercitazioni erogate in Inglese.

Tutte le lezioni saranno videoregistrate, e le videoregistrazioni saranno disponibili nella pagina Web del corso.

Materiale didattico

Libri:

- R.W. Hamming. Coding and Information Theory. Second edition, Prentice-Hall, 1986
- D.R. Stinson. Cryptography: Theory and Practice. Fourth Edition, CRC Press, 2018

Appunti forniti dal docente.

Periodo di erogazione dell'insegnamento

Secondo semestre A.A. 2023-2024

Modalità di verifica del profitto e valutazione

La verifica dell'apprendimento è basata su un colloquio orale avente per oggetto gli argomenti svolti a lezione. Durante il colloquio verrà valutata la capacità dello studente di esporre gli argomenti del corso, e di effettuare brevi ragionamenti su di essi.

Non sono presenti prove in itinere.

Orario di ricevimento

Su appuntamento

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ