

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Topologia Differenziale

2324-1-F4001Q111

Obiettivi

L' insegnamento ha lo scopo di proseguire ed approfondire il percorso in geometria della Laurea Triennale. Non è propedeutico agli altri insegnamenti di Geometria, che possono comunque essere scelti indipendentemente, ma ha la finalità di unificare e collegare le altre tematiche.

La topologia differenziale indaga l'interazione tra la struttura differenziale e le proprietà topologiche delle varietà differenziali. Costituisce una base naturale per affrontare anche tematiche più astratte e generali in Topologia Algebrica. Le tecniche legate all'ambito differenziale forniscono inoltre un approccio concreto ed esplicito alla teoria dell'intersezione.

I risultati di apprendimento attesi comprendono:

Conoscenze: la conoscenza e la comprensione delle definizioni e degli enunciati fondamentali, nonché delle strategie di dimostrazione basilari utilizzate in topologia differenziale; la conoscenza e la comprensione di alcuni esempi chiave in cui si esplica la teoria.

Capacità: la capacità di applicare le tecniche e i concetti sviluppati alla discussione di esempi notevoli e alla soluzione di semplici esercizi, nonché di esporre in modo organico, con chiarezza e precisione, i risultati teorici appresi.

Contenuti sintetici

Trasversalità e teoria dell'intersezione.

Teoria di De Rham su varietà differenziali.

Programma esteso

- Applicazioni trasverse ad una sottovarietà liscia, intersezione di varietà trasverse.
- Trasversalità per varietà a bordo.
- Applicazioni: esistenza di retrazioni lisce, Teorema del punto fisso di Brower.
- Teoremi di trasversalità, proprietà di genericità.
- Indice di intersezione modulo 2 e grado di una mappa liscia modulo 2.
- Teoria dell'intersezione per varietà orientate: numeri di intersezione per varietà orientate e teoria del grado.
- Applicazioni: numero di avvolgimento e Teorema di Jordan-Brouwer.
- Teoria dei punti fissi di Lefschetz.
- Campi vettoriale e Teorema di Poincarè-Hopf.
- Gruppi di Coomologia di de Rham su varietà lisce.
- Sequenza esatta di Mayer-Vietoris.
- Dualità di Poincaré su una varietà orientata.
- Formula di Kunneth.

Prerequisiti

Sono presupposti: i contenuti di base dei corsi di Analisi I, Algebra Lineare e Geometria, Geometria I e II del biennio della Laurea Triennale in Matematica; le nozioni di base sulle varietà differenziali e sulle forme differenziali, come introdotte nei corsi di Geometria II e III. Verrà fatto comunque un breve riepilogo quando necessario.

Modalità didattica

L' insegnamento si svolge mediante lezioni frontali alla lavagna.

Verranno proposti alcuni esercizi relativi agli argomenti svolti durante le lezioni. Saranno pubblicati alla pagina elearning del corso e la loro risoluzione potrà essere discussa in aula a richiesta degli studenti o durante i ricevimenti.

Il corso è previsto in lingua italiana ma potrebbe essere tenuto in lingua inglese in presenza di studenti stranieri.

Materiale didattico

Testi di riferimento:

- V. Guillemin, P. Haine, Differential forms, World Scientific Publishing Co.
- V. Guillemin e A. Pollack, Differential Topology, Prentice Hall
- J.W. Milnor, Topology from the Differentiable Point of View; University Press of Virginia.

Altro materiale:

-Appunti delle lezioni.

Periodo di erogazione dell'insegnamento

Modalità di verifica del profitto e valutazione

L'esame consiste di una prova orale.

Non sono previste prove in itinere o parziali.

La prova orale si divide in due parti:

- -nella prima vengono proposti quesiti di carattere teorico (definizioni, enunciati e dimostrazioni dei risultati discussi a lezione).
- -nella seconda vengono proposti quesiti di applicazione della teoria (risoluzione di esercizi simili a quelli proposti durante le lezioni, costruzione di esempi o controesempi).

Le due parti concorrono in egual misura alla determinazione del punteggio finale valutato in trentesimi. Nella prima parte verranno valutate la conoscenza e la comprensione dei concetti presentati nel corso e dei risultati teorici dimostrati in aula, la capacità di organizzare un' esposizione efficace, rigorosa e coerente. Nella seconda parte verranno valutate la padronanza e l'autonomia nell'affrontare lo svolgimento degli esercizi, l'esattezza delle risposte e la proprietà del linguaggio matematico utilizzato.

L'esame è superato se si ottiene una valutazione di almeno 18/30.

Sono previsti 5 appelli d'esame (giugno, luglio, settembre, gennaio e febbraio).

Orario di ricevimento

Su appuntamento.

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ