

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Neurobiochimica

2324-1-F0802Q064

Obiettivi

L'insegnamento si propone di fornire agli studenti gli strumenti fondamentali per comprendere la funzionalità del sistema nervoso ed i meccanismi patogenetici implicati nelle malattie neurologiche e neurodegenerative. A tal scopo sono fornite conoscenze avanzate di biochimica del sistema nervoso, le basi molecolari delle principali patologie neurodegenerative associate sia a mutazioni genetiche sia a fattori ambientali che intervengono nell'invecchiamento, i modelli sperimentali (cellulari ed animali) utilizzati, e le applicazioni biotecnologiche per lo sviluppo di biomarcatori e di nuovi farmaci.

Conoscenza e capacità di comprensione.

Conoscere i meccanismi che sottendono alla funzionalità del sistema nervoso, come esse sono alterate in condizioni patologiche, ed i nuovi approcci biotecnologici per la diagnostica e la terapia farmacologica.

Capacità di applicare conoscenza e comprensione.

Essere in grado di utilizzare le conoscenze acquisite per studi di ricerca biomedica di base o di ricerca applicata.

Autonomia di giudizio.

Essere in grado di riconoscere, valutare ed integrare le conoscenze acquisite con quelle offerte da altri corsi di studio.

Abilità comunicative.

Acquisire la terminologia appropriata per la discussione delle tematiche affrontate nel corso.

Capacità di apprendimento.

Essere in grado di comprendere ed integrare le conoscenze acquisite con quelle offerte dalla letteratura scientifica circa i nuovi sviluppi inerenti alle tematiche affrontate nel corso.

Contenuti sintetici

Biochimica del sistema nervoso: differenziazione neuronale, metabolismo energetico, biochimica della neurotrasmissione, meccanismi molecolari delle malattie neurodegenerative e nuovi approcci biotecnologici per la diagnosi e la terapia.

Programma esteso

Organizzazione del sistema nervoso e caratteristiche dei suoi componenti cellulari (neuroni e delle cellule gliali). Metabolismo cerebrale: barriera emato-encefalica e metabolismo energetico; altre vie metaboliche principali del sistema nervoso centrale; accoppiamento neuro-metabolico; biochimica dell'invecchiamento.

Trasmissione sinaptica; classi di neurotrasmettitori e loro metabolismo; recettori dei neurotrasmettitori e segnalazione post-sinaptica; gliotrasmissione e sinapsi tripartita.

Sviluppo e invecchiamento; ruolo dei fattori neurotrofici nel regolare differenziazione, sopravvivenza-morte neuronale (apoptosi e autofagia), mantenimento del fenotipo neuronale, dell'omeostasi e dell'attività neurotrasmettitoriale.

Basi biochimico-molecolari, diagnosi ed approcci terapeutici delle patologie neurodegenerative: Alzheimer, Parkinson, Sclerosi Multipla, Sclerosi Laterale Amiotrofica e Huntington. Ruolo di proteine misfoldate, supporto neurotrofico, stress ossidativo, eccitotossicità e gliosi reattiva.

Modelli di neurodegenerazione: neuroni e cellule gliali (colture 2D e 3D) come modelli sperimentali in-vitro; modelli animali (farmacologici, chirurgici e genetici) come modelli sperimentali di neuropatologie.

Nuovi approcci terapeutici: terapia genica, terapia cellulare con cellule staminali, vaccini, proteine ricombinanti umane, molecole mimetiche e nanoparticelle nel drug delivery.

Prerequisiti

Prerequisiti. Conoscenze di base di biochimica e biochimica cellulare.

Propedeuticità. Nessuna

Modalità didattica

Lezioni frontali.

L'insegnamento verrà tenuto in lingua italiana.

Il corso potrà essere erogato in lingua Inglese su richiesta degli studenti, se ne farà richiesta almeno il 10 % degli studenti frequentanti, o in presenza di studenti frequentanti che partecipano ai programmi di mobilità internazionale Erasmus o Doppia Laurea che ne facciano richiesta

Materiale didattico

Slides delle lezioni. Disponibili sulla piattaforma e-learning dell'insegnamento.

Bibliografia. Selezione di articoli scientifici disponibili sulla piattaforma e-learning dell'insegnamento.

Testi di riferimento

NEUROCHIMICA / George J. Siegel ... [Et al.]
PRINCIPI DI NEUROSCIENZE / E.R. Kandel – Schwartz - Jessel

Periodo di erogazione dell'insegnamento

Secondo semestre

Modalità di verifica del profitto e valutazione

Esame orale che consiste in un colloquio sugli argomenti svolti a lezione.

L'esame verte inizialmente su un argomento a scelta da parte dello studente tra quelli trattati nell'insegnamento. La discussione viene estesa ad altri argomenti per valutare la preparazione dello studente sui contenuti dell'insegnamento e la capacità di interloquire in modo critico su tali contenuti.

Orario di ricevimento

Ricevimento: su appuntamento mediante richiesta via email al docente

Sustainable Development Goals

SALUTE E BENESSERE | ISTRUZIONE DI QUALITÁ