

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Molecular Biology Applied To The Production of Therapeutic Proteins

2324-1-F0802Q081

Obiettivi

Questo insegnamento offre agli studenti competenze sulle strategie avanzate di Biologia molecolare impiegate per espressione di proteine, ormoni, fattori di crescita e vaccini di nuova generazione compresi vaccini a DNA e RNA, con esempi di applicazione e relativi vantaggi/svantaggi.

Conoscenza e comprensione:

Lo studente conoscerà le strategie classiche e avanzate di Biologia molecolare e le possibili applicazioni biotecnologiche utili alla produzione di proteine di interesse terapeutico.

Capacità di applicare conoscenza e comprensione:

Lo studente imparerà ad estrapolare da lavori scientifici possibili strategie utili per la produzione di prodotti biotecnologici. Lo studente sarà in grado di applicare tali conoscenze a futuri progetti di ricerca nell'ambito sia di svolgimento della tesi che lavorativo.

Autonomia di giudizio:

Lo studente sarà in grado di elaborare quanto appreso al fine di applicare e implementare le strategie apprese.

Abilità comunicative.

Lo studente saprà esprimere con un linguaggio adeguato quanto appreso e presentare possibili scenari tecnologici adatti ad ottenere un prodotto biotecnologico.

Capacità di apprendimento

Lo studente sarà in grado di consultare e comprendere la letteratura relativa agli argomenti trattati nel corso.

Contenuti sintetici

Il corso si propone di fornire una visione approfondita e ragionata delle tecniche classiche e avanzate utilizzate per espressione di proteine, ormoni, fattori di crescita e vaccini di nuova generazione compresi vaccini a DNA e RNA. Verranno trattati sistemi di espressione di tipo transiente o stabile in diversi organismi tra cui vegetali e microorganismi impiegati sia per la ricerca di base che nel settore dell'agricoltura molecolare (molecular farming).

Programma esteso

Vaccini biotecnologici e loro progettazione. Alcuni esempi di vaccini biotecnologici: anti-epatite B, anti-HPV, anti-Rotavirus, vaccini polisaccaridici coniugati. Rational design di vaccini a DNA e RNA. Esempi di diverse applicazioni mediante analisi di articoli scientifici.

Batteriofagi e batteri ricombinanti come vaccini o per il drug-delivery.

Utilizzo del lievito per la produzione di molecole di uso farmaceutico: vaccini, anticorpi, ormoni, enzimi terapeutici, fattori di crescita. Vaccini basati su surface display in lievito e yeast-derived VLP.

Espressione di proteine in eucarioti superiori: Trasfezione di cellule di mammifero. Vettori virali e retrovirali. Produzione industriale di proteine ricombinanti con cellule di mammifero.

Tecnologie biomolecolari basate sull'utilizzo di organismi vegetali. Trasformazione stabile o transiente delle specie vegetali. Metodi di trasformazione biolistica, trasformazione di protoplasti, microiniezione, bioactive beads. Sistemi mediati da *Agrobacterium tumefaciens*; agroinfiltrazione, agrodrench. Caratteristiche del plasmide Ti e meccanismo di trasferimento del T-DNA. Ingegnerizzazione di vettori per la trasformazione genetica mediata da *A. tumefaciens*. Trasformazione dei cloroplasti. Vettori di espressione per studi applicativi e di base. I geni marcatori e l'ottenimento di piante marker free. Sequenze regolatrici di promotori, introni e sequenze leader; transgenesi e cisgenesi in campo vegetale per migliorare l'espressione di molecole eterologhe. Espressione e produzione di vaccini in piante. Esempi di diverse applicazioni mediante analisi di articoli scientifici.

I virus delle piante come sistemi di espressione. I principali vettori virali: Virus a RNA (Tabacco mosaic virus, Potato virus); virus a DNA (Cauliflower mosaic virus, Geminivirus). Espressione di proteine, polipeptidi, ed epitopi immunogenici mediante virus che formano Virus Like Particles (VLP). Vettori virali per studi di genomica funzionale mediante espressione di piccoli RNA interferenti: Tabacco rattle virus, Tomato bushy stunt virus.

Prerequisiti

Prerequisiti. Sono necessari i concetti di base della Biologia Molecolare. Propedeuticità: nessuna.

Modalità didattica

Lezioni frontali in aula, che comprenderanno presentazioni da parte del docente e analisi di specifici articoli scientifici.

Ricerca e analisi di articoli scientifici e presentazioni orali in aula da parte degli studenti.

L'insegnamento verrà tenuto in lingua italiana.

Materiale didattico

Presentazioni preparate dal docente e una selezione di articoli scientifici. L'intero materiale didattico sarà reperibile

sulla i	oiattaforma	e-learning	dell'insegnamen	to. Il materiale	didattico è	prevalentemente in inglese.

Periodo di erogazione dell'insegnamento

Primo semestre.

Modalità di verifica del profitto e valutazione

Prova orale. L'orale prevede una piccola presentazione di un articolo scientifico scelto dallo studente e alcune domande sugli argomenti affrontati durante il corso.

Orario di ricevimento

Su appuntamento tramite richiesta via e-mail al docente.

Sustainable Development Goals

SALUTE E BENESSERE | ISTRUZIONE DI QUALITÁ