

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Molecular Genetics Human

2324-1-F0601Q104

Obiettivi

l'insegnamento si propone di introdurre gli approcci allo studio del genoma umano per identificare il geni malattia e le relazioni funzionali genotipo-fenotipo in situazioni normali e patologiche.

- 1. Conoscenza e capacità di comprensione conoscere gli approcci di base al mappaggio dei geni-malattia nell'uomo e riconoscerne differenze e peculiarità.
- 2. Capacità di applicare conoscenza e comprensione essere in grado di applicare le conoscenze acquisite al punto 1 in modo da poter leggere e capire articoli originali relativi agli argomenti trattati
- 3. Autonomia di giudizio leggere e discutere in modo critico lavori originali.
- 4. Abilità comunicative saper utilizzare in modo specifico il linguaggio della disciplina per discutere in modo critico gli argomenti trattati
- 5. Capacità di apprendimento avere le competenze necessarie per affrontare in autonomia ulteriori studi specialistici in genetica molecolare umana

Contenuti sintetici

Struttura del genoma umano Alberi genealogici e mutazioni patogeniche Malattie genetiche monogeniche e poligeniche. Genomic imprinting e mutazioni dinamiche Studi di concatenzione (Linkage analysis) Studi di associazione genome-wide (GWAS) Dal "gene-candidato" al "gene-malattia" Selezione naturale positiva nell'uomo

Programma esteso

Struttura del genoma umano: il sequenziamento del genoma umano. Variabilità genetica nell'uomo. Caratteristiche, metodi di studio e utilizzo. Il progetto HapMap: disegno e significato

Alberi genealogici. Mutazioni patogeniche nell'uomo. Relazioni complesse genotipo-fenotipo: espressività e penetranza.

Malattie genetiche monogeniche: esempi.

Malattie poligeniche: concetti di base e esempi. Cenni di genetica quantitativa

Genomic imprinting: non equivalenza del genoma materno e paterno e conseguenze fenotipiche. Esempi e interpretazioni

Linkage analysis (analisi di concatenazione): concetti di base, applicazione ed esempi di utilizzo per mappare genimalattia

Studi di associazione genome-wide (GWAS): concetti di base, applicazione ed esempi di utilizzo per mappare varianti associate a fenotipi patologici

Dal gene candidato al gene-malattia disegno di strategie attraverso esempi

Selezione naturale positiva nell'uomo: è possibile identificare regioni sottoposte a selezione positiva? strumenti, esempi e interpretazioni.

Prerequisiti

una solida base di Genetica e Biologia Molecolare

Modalità didattica

lezioni frontali

Materiale didattico

Strachan T. & Read "Human molecular Genetics" (l'edizione più recente possibile).

Il corso si basa per la maggior parte su articoli originali e risorse on-line che verranno indicati al momento opportuno.

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

esame orale. Gli studenti sceglieranno un articolo originale fra una lista disponibile. La discussione del lavoro scelto servirà da punto di partenza per la discussione.

Orario di ricevimento

si prega di prendere appuntamento per e-mail (antonella.ronchi@unimib.it)

Sustainable Development Goals