

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Chimica Fisica Superiore - Modulo 1

2324-1-F5401Q027-M1

Obiettivi

Il primo modulo del Corso di Chimica Fisica Superiore ha un duplice obiettivo: (i) consentire agli studenti di acquisire i concetti fondamentali della chimica quantistica; (ii) consentire l'acquisizione dei principali metodi teorici ab-initio di determinazione della struttura elettronica e delle proprietà di sistemi chimici

Conoscenze e capacità di comprensione acquisite

- Definizioni, principali postulati e teoremi della meccanica quantistica
- · Metodologie quantistiche per la descrizione degli atomi e delle molecole, e per il calcolo delle loro proprietà
- Formalismo appropriato per il trattamento di problemi di chimica quantistica

Conoscenze e capacità di comprensione applicative acquisite

A seguito della comprensione del significato fisico e delle condizioni di applicabilità delle leggi e dei teoremi alla base della chimica quantistica, lo studente sarà in grado di applicare questi ultimi alla risoluzione di semplici problemi.

Autonomia di giudizio acquisita

Al termine del corso, lo studente è in grado di valutare le potenzialità e i limiti delle diverse metodologie, ed è quindi in grado di individuare l'approccio quanto-meccanico più appropriato dato il problema da affrontare.

Abilità comunicative

Saper usare correttamente il formalismo della chimica quantistica e saper esporre oralmente con proprietà di linguaggio i fondamenti della disciplina e i casi di studio proposti.

Capacità di apprendere

Capacità di apprendimento da testi di livello universitario che trattino dello studio della chimica quantistica e della chimica teorica e computazionale; sviluppo di competenze critiche nell'analisi di modelli scientifici.

Contenuti sintetici

Fondamenti della meccanica quantistica; teoria perturbativa e metodo variazionale; atomi polielettronici; struttura elettronica molecolare.

Programma esteso

- Richiami e approfondimenti sull'approccio ondulatorio della meccanica quantistica;
- Metodi della meccanica quantistica: calcolo variazionale e metodo perturbativo per la risoluzione dell'equazione di Schrödinger per sistemi polielettronici
- Spin elettronico e antisimmetria.
- Atomi polielettronici.
- Struttura elettronica molecolare: approssimazione di Born-Oppenheimer; teoria degli orbitali molecolari.
 Approccio Hartree-Fock-Roothan a sistemi molecolari. Esempi di calcolo della struttura elettronica molecolare.

Prerequisiti

Precedente frequenza di un insegnamento di chimica quantistica elementare. Conoscenze di base di matematica e fisica

Modalità didattica

L'insegnamento è ripartito in due moduli, erogati da Claudio Greco (meccanica quantistica) e da Dario Narducci (meccanica statistica).

Materiale didattico

Trasparenze illustrate dal docente a lezione

I.N. Levine, Quantum Chemistry, Prentice Hall.

Periodo di erogazione dell'insegnamento

Primo anno, primo semestre

Modalità di verifica del profitto e valutazione

Esame orale. Il colloquio orale è volto a verificare il livello delle conoscenze acquisite, la comprensione dell'approccio concettuale nello sviluppo della teoria presentata durante il corso ed il corretto uso del linguaggio da parte dell'esaminando/a.

Il voto finale dell'insegnamento "Chimica Fisica Superiore" è la media dei voti acquisiti nei 2 moduli. Lo studente può, a sua richiesta, sostenere prove separate sui due moduli.

Orario di ricevimento

Su appuntamento

Sustainable Development Goals