

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Motor Control

2425-1-I0201D131-I0201D196M

Aims

Study of the principles of sensorimotor control and of the involved neural structures

Contents

Computational principles of sensorimotor control Sensorimotor learning Involved neural structures

Detailed program

Introduction to sensorimotor control Marr Marr's levels of analysis Planning and control Direct and inverse kinematics Direct and inverse dynamics

Control schema and prediction

Feedforward e feedback control Internal models (inverse e forward) State estimation Bayesian inference

Optimality

Trajectory planning Cost functions: minimum jerk, minimum torque, minimum variance Optimal feedback control Minimum intervention principle

Sensorimotor learning

Adaptation Task e prediction error

Cerebellum

Functions Cerebellar microcircuit Cerebellar learning

Motor cortical regions

Primary motor cortex Premotor cortex Descedent pathways

Spinal circuity

Spinal cord Muscle proprioceptors Spinal reflees and their modulation

Control of locomotion

Central Pattern Generator (CPG) CPG modulation by sensory afferents and sovraspinal regions

Prerequisites

Neuroanatomy basic knowledge

Teaching form

7 Standard teaching (2h/each) in presence: topics are discussed by the teacher in the classroom Integrated teaching in presence: students will perform presentations to deepen the topics proposed by the teacher (2 hours).

Textbook and teaching resource

This course has been developed based on two books and several scientific articles. The teaching resources specific for each topic will be communicated during the classes.

Textbooks:

Kandel E., et al. (2021). Principles of Neural Science. (6th ed). McGraw Hill. Capitoli 30-36. Purves D., et al. (2021). Neuroscienze. (5th ed. italiana; 6th ed. americana). Zanichelli. Capitoli 16-19.

Scientific papers (required):

Marr D. (2010) Vision: A Computational Investigation Into the Human Representation and Processing of Visual Information. The MIT Press. Capitolo 1.

Wolpert D, Ghahramani Z. (2000). Computational principles of movement neuroscience. Nat Neurosci. Nat Neurosci 3 (Suppl 11), 1212–1217.

Kawato M. (1999). Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 9(6):718-27. Todorov E. (2004). Optimality principles in senosrimotor control. Nat Neurosci. 7(9):907-915.

Scientific papers (suggested):

Körding KP, Wolpert DM. (2004). Bayesian integration in sensorimotor learning. Nature. 427(6971):244-7

Shadmehr R, Mussa-Ivaldi F. (1994) Adaptive representation of dynamics during learning of a motor task. JNeurosci. 14(4):3208:24

Morasso, P. (1981) Spatial control of arm movements. Exp Brain Res 42, 223-227.

Todorov E, Jordan MI. (2002). Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5(11):1226-1235.

Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008 Mar;185(3):359-81

Semester

2nd term

Assessment method

Described in the subject's syllabus

Office hours

By appointment cristiano.alessandro@unimib.it

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING | QUALITY EDUCATION | REDUCED INEQUALITIES