

COURSE SYLLABUS

Medical Physics II

2425-1-H4102D001-H4102D005M

Aims

The primary goal of the course is to provide students with the tools for the understanding of the complex reactions that represent the molecular basis of life, and with the fundamentals to identify the cause-effect relations of the most important chemical and physical processes for the curriculum and the work of a physician. This knowledge will form the primary basis for a rationale approach to the knowledge of medical sciences.

Contents

Excercises on the following subjects

Biomechanics: Statics of the rigid body with applications to the human body.

Fluid mechanics: ideal fluids and real fluids.

Electrostatics and electrodynamics: Electrical charges and electrical circuits.

Physics of radiation and biological effects of radiation.

Optics: mechanism of the human visual system.

Detailed program

Excercises on the following subjects

BIOMECHANICS - Moment of a force. - Balance of a body with exemplifications of Human Body. - Levers. - Mechanics of locomotion. - Statics of the body. - Young's modulus and elasticity. - Compression module. - Deflections, twists, fractures.

MECHANICS OF FLUIDS: - Stevino's Law - Principle of Archimedes - Theorem of Bernoulli – Poiseuille equation. Properties of real liquids and viscosity- Concept of hydraulic resistance . - Surface tension in liquids. - Surfactants; phenomena of adhesion and capillarity. - Laplace law.

ELECTRODYNAMICS: - Interaction between electric charges. - Electrical field and electrostatic potential. - Distribution of electric charges: electric dipole and dipole layer. -Meaning of the dielectric constant. - The capacity of a capacitor. - Electrical circuits. - Laws of Ohm. - Concept of stationary current and of transient current. - Charge and discharge of a capacitor.

RADIATION PHYSICS: - Overview of the physics of the nucleus. - Radioactive decay. - Alpha, beta, gamma and nuclear reactions decay. - Emission and absorption of corpuscular and electromagnetic radiation. - X-ray. - Radiation-matter interaction. - Biological effects of radiation

OPTICS: - Spectrum of electromagnetic radiation. - Absorption of the radiation - Light and image formation - Lenses and geometrical optics - Construction of images according to geometrical optics - Eye as an optical system - Optical defects of the eye - Theory of the color perception

Prerequisites

Basic knowledges of mathematics and analysis.

Teaching form

Lectures.

All lectures are conducted in person in a traditional format.

6 lectures of 3 hours and 1 lecture of 2 hours each are conducted in person in a traditional format.

Textbook and teaching resource

Alessandro Bacchetta Domenico Scannicchio "Introduction to Medical Physics" ISBN: 978-8808320469

Semester

Second semester

Assessment method

MULTIPLE CHOICE TEST: Multiple choice exercises (numerical exercises that require the application of several physical principles).
No mid-term tests are scheduled.

Office hours

By telephone appointment (02 6448 8209) or by email (francesco.mantegazza@unimib.it).

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING
