

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Immunologia

2425-2-E0201Q051

Aims

The course aims at providing the basic concepts on the organization and functioning of the immune system. Students attending Immunology teaching are expected to achieve the following goals:

Knowledge and understanding. Knowledge on the bases of innate and adaptive immunity, the mechanisms underlying inflammation, the generation of antigen-receptor diversity, the activation of T and B lymphocytes, the structure and function of antibodies. Knowledge on the basic concepts and principles concerning vaccination.

Applying knowledge and understanding. Students will be able to understand the key role of the immune system in different pathologies and the importance of immunology, also through history.

Making judgments. Students will be able to link the different topics, judge the resolved and unresolved aspects concerning the complexity of the immune system, highlight the shortcomings of current knowledge on the functioning of the immune system.

Communication skills. Students will be able to effectively describe the contents of the course, in both written and oral form, using the most appropriate technical terms.

Learning skills. Students will be able to consult scientific texts regarding the topics covered and integrate the knowledge acquired with the contents of other scientific disciplines (i.e. cellular and molecular biology, biochemistry etc).

Contents

- 1) General features of the immune system
- 2) The antigen
- 3) The B cell antigen receptor (BCR)
- 4) The T cell antigen receptor (TCR)
- 5) The major hystocompatibility complex (MHC)
- 6) The process of antigen presentation
- 7) T and B lymphocyte activation
- 8) Cytokines and their receptors

- 9) Pattern Recognition Receptors
- 10) cells of the innate immunity: myeloid cells and lymphoid cells
- 11) Complement
- 12) The inflammatory process
- 13) Effector mechanisms of humoral immunity
- 14) Effector mechanisms of cell-mediated immunity
- 15) Tolerance
- 16) Autoimmunty
- 17) Vaccines
- 18) Monoclonal antibodies

Detailed program

1: General characteristics of the immune system

Description: Innate and adaptive immunity; Organization of the immune system, general cahracteristics of organs, tissues and cells of the immune system. Primary and secondary lymphoid organs. Distribution and circulation of the cells of the immune system.

2: The antigen

Description: Concept of antigen, immunogen, antigenic detrminat or epitope, carrier, aptene.

3: The B cell antigen receptor (BCR)

Description: Immunoglobulins. structure nad function of antibodiese and of the BCR. The generation of repertoire diversity. Isotypes and idiotypes. Biological functions of immunoglobulins classes and subclasses. Cellular distribution of FC receptors. Cellular functions ediated by antibodies. monoclonal antibodies. Concept, methodology, applications.

4: The T cell receptor (TCR)

Description: organization, rearrangements and expression of TCR and coreceptors; biochemical structure of the TCR; generation of the repertoire diversity

5: The major histocompatibility complex (MHC)

Description: Genic organizationa and polymorphisms. Molecular structure and classification of MHC di class I and II molecules. The groove fro antigen binding. MHC di class I and II in antigen presentation. The ternary complex, MHC-peptide-TCR

6: Antigen presentation

Description: Antigen recognition by T and B cells. Extracellular and intracellular antigen processing.

7: Professional antigen presenting cells

Description: Dendritic cells

8: B and T cell activation.

Description: Signal transduction. Adhesion molecules and costimulatory molecules for T cell activation.

9: Cytokines and their receptors.

Description: Origine and molecular structure. Mechanism of action and target cells. Role of cytokine in leukocytes differentiation. Role of cytokines in Th1, Th2 and Th17 cell differentiation.

10: Interazioni microrganismi-ospite

Description: Pattern recognition receptor and Danger theory. PAMPs and DAMPs

11: The complement system

Description: Mecahnism of complement activation, functions of the complement

12: The inflammatory process

Description: Activation of inflammation, leukocyte recruitment, the role of inflammation in response to infection, from inflammation to the activation of adaptive immunity

13: Effector mechanisms of humoral immunity.

Description: T and B cell cooperation. Plasmacells. Isotype switch, hypermutation and affinity maturation. Kinetic of primary and secondary response

14: Effector nechanisms of cell-mediated immunity

Description: macrophage activation. Cytotoxic T lymphocytes and cell killing, effector mechanisms of t helper cells and NK cells

15: Immunological memory

Description: memory of T cells; memory of B cells

16: Vaccines

Description: active and passive vaccination, prophylactic vaccines, therapeutic vaccines, adjuvants

Prerequisites

Background: none

Specific prerequisites: none.

General prerequisites: Students can take the exams of the second year after passing the examinations of Introductory biology, General and inorganic chemistry, Mathematics, and Foreign Language.

Teaching form

Classroom lectures supported by slides.

Teaching language: italian.

Didactic activities are conveyed by means of face-to-face lectures

1 CFU concerning the actin cytoskeleton of dendritic cells, modifications of actin cytoskeleton during dendritic cell maturation, phagoctosis, pinocytosis and macropinocytosis of dendritic cells and macrophages is taught in copresence with Dr Metello Innocenti expert in cell bioogy and cytoskeleton in particular

Textbook and teaching resource

Learning material (slides of the lessons) is available at the e-learning platform of the course.

Recommended textbooks:

- Immunobiology from Janeway
- Cellular and Molecular Immunology from Abul Abbas e Andrew Lichtman

Semester

First semester

Assessment method

Oral examination.

The number of questions can vary from a minimum of two to a maximum of five, depending on the level of preparation of the student. The questions are related to the entire content of the course. The critical level reached is evaluated by the teacher on the basis of the student's ability to connect the different topics, to judge the resolved and unsolved aspects concerning the complexity of the immune system, to highlight the shortcomings of current knowledge on the functioning of the immune system, highlight the role key to the immune system in different diseases and highlight, also through historical notes, the importance of immunology.

Office hours

Contact: on demand, upon request by mail to lecturer

Sustainable Development Goals

QUALITY EDUCATION