

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Quantum Mechanics

2425-1-F4001Q121

Obiettivi

Introduzione generale ai principi della Meccanica Quantistica

Contenuti sintetici

- Concetti fondamentali della fisica quantistica: stati, operatori e postulati della fisica quantistica
- Proprietà quantistiche: operatori, principio di indeterminazione, basi di informazione quantistica
- Quantizzazione canonica e meccanica quantistica: operatori posizione e impulso, teorema di Noether
- Evoluzione temporale: equazione di Schroedinger, rappresentazione di Schroedinger e di Heisenberg
- **Meccanica quantistica in una dimensione**: particella unidimensionale libera, pacchetto d'onda, buca e gradino di potenziale, barriera di potenziale, oscillatore armonico
- Sistemi quantistici in più di una dimensione: spazi prodotto diretto, potenziali separabili, il problema dei due corpi
- Il momento angolare: gruppi e algebre di Lie, gruppo delle rotazioni, momento angolare, spin, composizione di spin e momenti angolari
- Problemi tridimensionali: equazione di Schroedinger radiale, potenziale coulombiano e atomo di idrogeno
- Teoria delle perturbazioni
- Azione in meccanica quantistica: integrale di cammino e approccio di Feynman.

Programma esteso

Una volta completato il corso, I? student? avrà acquisito le seguenti conoscenze:

- saprà identificare gli esperimenti incompatibili con la fisica classica e motivare la necessità di una teoria quantistica che li risolva
- saprà riassumere i concetti di base della fisica quantistica in termini di operatori e stati
- sarà in grado di enunciare, con parole proprie, i postulati della fisica quantistica
- saprà enunciare il principio di indeterminazione e dare esempi di osservabili compatibili e incompatibili in base alle loro proprietà di commutazione
- saprà caratterizzare l'informazione contenuta in uno stato quantistico tramite il formalismo della matrice densità
- saprà enunciare il teorema di Noether e applicarlo a sistemi quantistici
- saprà introdurre gli operatori posizione e impulso e discuterne le proprietà
- sarà in grado di introdurre l'operatore che controlla l'evoluzione temporale di un sistema quantistico e di formulare l'equazione di Schroedinger per la funzione d'onda
- saprà discutere la soluzione in termini di autostati e autovalori di semplici problemi unidimensionali quali la buca, il gradino di potenziale, la barriera di potenziale e l'oscillatore armonico
- saprà generalizzare la quantizzazione di sistemi meccanici a sistemi quantistici in più di una dimensione
- saprà fornire una realizzazione fisica del concetto matematico di rappresentazione di un gruppo di simmetria usando come esempio il gruppo delle rotazioni e il momento angolare
- saprà illustrare come risolvere problemi in tre dimensioni quali l'atomo di idrogeno
- sarà in grado di discutere metodi di approssimazione per risolvere l'equazione di Schroedinger
- saprà introdurre il concetto di azione in meccanica quantistica e ottenere l'equazione di Schroedinger dall'integrale di cammino

Una volta completato il corso, I? student? avrà acquisito le seguenti abilità:

- sarà in grado di determinare la quantità di informazione contenuta in un sistema quantistico e come essa si modifichi in seguito a una misura
- saprà applicare il linguaggio della fisica quantistica alla meccanica classica partendo da considerazioni di natura fisica, legate alla realizzazione delle simmetrie dei sistemi meccanici
- sarà in grado di risolvere semplici problemi uni-dimensionali in analogia con i prototipi discussi a lezione
- saprà stimare la forma della funzione d'onda di una particella in base alle proprietà del potenziale
- sarà in grado di applicare la tecnica di separazione delle variabili per risolvere problemi in più di una dimensione
- saprà comporre spin e momenti angolari
- saprà applicare tecniche di approssimazione quali la teoria delle perturbazioni indipendente dal tempo per risolvere semplici problemi

Una volta completato il corso, I? student? avrà acquisito le seguenti competenze:

- avrà compreso la portata concettuale della fisica quantistica e la necessità di ripensamento radicale di ciò che ci si aspetta da una teoria fisica
- · avrà acquisito dimestichezza con il linguaggio universale nella formulazione della fisica moderna
- avrà acquisito una serie di tecniche e strumenti matematici utili per diverse applicazioni in fisica teorica che forniranno una solida base per affrontare corsi più avanzati quali teoria quantistica dei campi o fisica della materia

Prerequisiti

Conoscenza di base di fisica classica, analisi e algebra come insegnata nella laurea triennale in Matematica

Modalità didattica

Lezione frontale. La partecipazione attiva sarà incoraggiata attraverso la discussione di esempi e problemi durante le lezioni secondo principi di apprendimento attivo e di didattica partecipativa.

Materiale didattico

Testo di riferimento

• S. Forte, L. Rottoli, "Fisica Quantistica", Zanichelli

Testi di approfondimento

- J. Dimock, "Quantum Mechanics and Quantum Field Theory", Cambridge
- J.J. Sakurai, J. Napolitano, "Modern Quantum Mechanics (2nd Edition)", Addison-Wesley (anche disponibile in traduzione italiana)
- Benjamin Schumacher, Michael Westmoreland, "Quantum Processes Systems, and Information", Cambridge University Press
- A. Berera e L. Del Debbio, "Quantum Mechanics", Cambridge U.P.
- J. Binney e D. Skinner, "The Physics of Quantum Mechanics", Oxford U.P.
- M. Maggiore, "A modern introduction to quantum field theory", Oxford U.P. (per teoria dei gruppi)

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

Esame orale basato sulla discussione di argomenti trattati a lezione e su esercizi svolti durante il corso. Il punto di partenza dell'esame sarà un **esercizio assegnato** anticipatamente da risolvere a casa e presentare durante l'esame.

L'esame verte su tutto il programma del corso, inclusi esercizi ed approfondimenti svolti durante le lezioni, che sono parte integrante del corso.

Orario di ricevimento

Su richiesta dell? student?, previo appuntamento via email col docente

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ