

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Environmental Microbiology

2425-2-F7501Q087

Obiettivi

L'insegnamento si propone di fornire conoscenze approfondite sullo studio delle comunità microbiche in ambienti naturali ed antropici, sui processi ecologici che le regolano e sulle loro funzioni negli ecosistemi.

- 1. Conoscenza e capacità di comprensione. Al termine dell'insegnamento lo studente dovrà conoscere: i metodi di studio delle comunità microbiche; i principi che regolano la tassonomia microbica e i relativi problemi; i principali taxa microbici presenti nei diversi comparti ambientali e le funzioni da essi svolte, anche in termini di servizi ecosistemici forniti; i processi ecologici che regolano le comunità microbiche; le principali interazioni dei microrganismi con animali, piante ed ambiente antropico.
- 2. Capacità di applicare conoscenza e comprensione. Al termine dell'insegnamento lo studente dovrà essere in grado di applicare le conoscenze acquisite nel corso dimostrando di saper includere gli aspetti microbiologici nello studio di ecosistemi naturali ed antropici.
- 3. Autonomia di giudizio. Lo studente dovrà essere in grado di ipotizzare quali siano i processi ecologici ed i servizi ecosistemici imputabili ai microrganismi in una molteplicità di contesti naturali ed antropici.
- 4. Abilità comunicative. Alla fine dell'insegnamento lo studente saprà descrivere in modo appropriato le tematiche studiate utilizzando il corretto lessico specifico.
- 5. Capacità di apprendimento. Alla fine dell'insegnamento lo studente sarà in grado di consultare la letteratura sugli argomenti trattati e integrare in autonomia le conoscenze acquisite con altre legate ai processi ecologici in oggetto, anche con approccio multidisciplinare.

Contenuti sintetici

1. Metodi di studio delle comunità microbiche. 2. Diversità tassonomica dei procarioti. 3. Ruolo dei procarioti nei

cicli biogeochimici e impatto dei cambiamenti climatici sulle attività microbiche. 4. I procarioti nei compartimenti ambientali e le loro funzioni: procarioti del suolo, delle acque interne, della criosfera, dell'atmosfera. 5. Processi ecologici applicati alle comunità microbiche e interazioni tra specie. 6. Ruoli ecologici dei microbiomi associati a piante e animali. 7. I procarioti nei beni culturali. 8. Laboratorio di microbiologia molecolare 9. Laboratorio di bioinformatica

Programma esteso

1. Metodi di studio delle comunità microbiche.

Tecniche classiche di coltivazione, isolamento e caratterizzazione di ceppi microbici. Basi di tassonomia microbica. Problemi di coltivabilità. Tecniche molecolari di studio delle comunità. Metodi di valutazione dell'attività microbica in situ. Metodi "-omics".

2. Diversità tassonomica dei procarioti.

Principali taxa dei domini Bacteria e Archaea e loro funzioni. L'albero della vita universale. Il ruolo del trasferimento genico orizzontale (HGT).

3. Ruolo dei procarioti nei cicli biogeochimici e impatto dei cambiamenti climatici sulle attività microbiche.

Il ciclo biologico del carbonio: fototrofia/chemiotrofia; autotrofia/eterotrofia; il ciclo del metano. I cicli biologici dell'azoto, dello zolfo, del ferro e di elementi minori. Impatto dei cambiamenti climatici sull'attività microbiologica.

4. I procarioti nei compartimenti ambientali e le loro funzioni.

I procarioti del suolo. I procarioti delle acque interne; focus sulla dispersione dei geni di resistenza agli antibiotici. I procarioti della criosfera. I procarioti dell'atmosfera e il loro trasporto.

5. Processi ecologici applicati alle comunità microbiche e interazioni tra specie.

Selezione, dispersione, drift. Cenni alle interazioni tra microrganismi e tra micro- e macrorganismi.

6. Ruoli ecologici dei microbiomi associati a piante e animali.

I microbiomi della fillosfera e della rizosfera. I microbiomi, in particolare intestinali, associati agli animali e agli esseri umani.

7. I procarioti nei beni culturali.

Biodeterioramento e interventi biologici di recupero di manufatti (biocleaning).

8. Laboratorio di microbiologia molecolare.

Estrazione di DNA da suolo, analisi e quantificazione di marcatori tassonomici e funzionali

9. Laboratorio di bioinformatica.

Dati da sequenziamenti tradizionali e high-throughput: formati e banche dati. Elaborazione bioinformatica dei dati.

Prerequisiti

Sono necessari i concetti di base di Microbiologia generale e/o Biologia cellulare.

Modalità didattica

- 17 lezioni da 2 ore svolte alternando modalità erogativa e modalità interattiva in presenza
- 1 lezione da 2 ore svolta in modalità erogativa nella parte iniziale che è volta a coinvolgere gli studenti in modo interattivo nella parte successiva (discussione in gruppo). Tutte le attività sono svolte in presenza.
- 3 attività di laboratorio, LiBaaS, da 4 ore svolte in modalità interattiva in presenza
- 1 attività di laboratorio, LiBaaS, da 3 ore svolta in modalità interattiva in presenza Tutto il materiale didattico sarà messo a disposizione degli studenti tramite e-learning.

Materiale didattico

Slides reperibili sulla pagina e-learning dell'insegnamento.

Testi di approfondimento consigliati:

- 1. Brock, Biologia dei Microrganismi: microbiologia generale, ambientale e industriale, Pearson (disponibile in biblioteca).
- 2. Biavati e Sorlini, Microbiologia agroambientale.

Tuttavia, poiché non esiste un vero e proprio libro di testo che copre tutti gli argomenti trattati dal corso, è fortemente consigliata la frequenza.

Articoli scientifici per approfondimenti messi a disposizione dal docente.

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

COLLOQUIO SUGLI ARGOMENTI SVOLTI A LEZIONE: prevede 3 domande di carattere generale sugli argomenti trattati durante le lezioni frontali. Lo studente dovrà dimostrare di saper esporre con chiarezza le conoscenze acquisite, dimostrando la loro completa comprensione e proprietà di linguaggio. Il voto è espresso in trentesimi.

Facoltativamente, è possibile scegliere un argomento di interesse ed approfondirlo tramite lo studio di un articolo scientifico tra quelli messi a disposizione. In questo caso, una delle tre domande sarà sostituita dall'argomento a scelta.

Orario di ricevimento

Su appuntamento fissato tramite e-mail (isabella.gandolfi@unimib.it)

Sustainable Development Goals

LOTTA CONTRO IL CAMBIAMENTO CLIMATICO | VITA SULLA TERRA