

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Signal and Imaging Acquisition and Modelling in Healthcare

2425-1-F9102Q016

Obiettivi

L' obiettivo del corso è di fornire i principi fisici e i metodi di elaborazione alla base dei sistemi di acquisizione dei segnali e immagini biomedici per lo sviluppo di modelli di intelligenza artificiale applicati a tali sistemi che supportino la decisione medica nella prevenzione, screening, diagnosi e terapia di pazienti a rischio di patologie multifattoriali complesse.

Le lezioni teoriche sono integrate con esercitazioni pratiche in aula durante le quali saranno forniti dataset di segnali e immagini biomedici per applicare i principi teorici nello sviluppo di modelli di intelligenza artificiale a supporto della decisione medica.

Contenuti sintetici

Principi fisici e metodi di elaborazione dei sistemi di acquisizione dei segnali e immagini biomedici per lo sviluppo di modelli di intelligenza artificiale affidabili e comprensibili applicati che supportino la decisione medica.

Lezioni teoriche integrate con esercitazioni pratiche in aula per lo sviluppo di modelli di intelligenza artificiale a supporto della decisione medica.

Programma esteso

- -Biomedical signals: Electrocardiography/Electroencelography/Electromiography/functional NIRS
 - Machine learning and deep learning systems for signal-guided personalized predictive medicine
 Biomedical imaging: Ultrasonography/Radiography/Computerized Tomography/ Mammography/MRI, mpMRI, fMRI/Positron Emission Tomography/Hybrid systems

- -Biomedical imaging in image-guided radiotherapy
- -Biomedical imaging for lesion detection and semantic segmentation
- Radiomic/radiogenomic modelling for screening and diagnosis
 - -Radiomic/radiogenomic modelling for treatment
 - -Machine learning and deep learning systems for explainable image-guided personalized predictive medicine (supervised/unsupervised learning)

Prerequisiti

Livello medio-alto di programmazione in Matlab o Python

Modalità didattica

Lezioni frontali ed esercitazioni mediante codici di programmazione.

Il docente fa molte lezioni in cui inizia con una prima parte in cui vengono esposti dei concetti (modalità erogativa) e poi si apre un'interazione con gli studenti che definisce la parte successiva della lezione (modalità interattiva).

- 9 lezioni frontali da 2 ore svolte in modalità erogativa in presenza in modalità erogativa nella parte iniziale che è volta a coinvolgere gli studenti in modo interattivo nella parte successiva;
- 11 esercitazioni da 4 ore e 1 esercitazion da 2 ore svolte in presenza volta a coinvolgere gli studenti in modo interattivo nel PROJECT WORKS;

Tutte le attività sono svolte in presenza.

Materiale didattico

Appunti, software, dati e articoli scientifici forniti agli studenti durante il corso.

Periodo di erogazione dell'insegnamento

Primo semestre.

Modalità di verifica del profitto e valutazione

L' esame consiste in un colloquio orale volto a verificare il livello di conoscenza dello studente degli argomenti trattati durante il corso e in 2 PROJECT WORKS, progetti di sviluppo di 2 codici di programmazione basati sui metodi di machine learning e deep learning su presentati durante il corso.

Orario di ricevimento

Al termine della lezione in aula il docente e' disponibile a ricevere gli studenti per 1 h

Sustainable Development Goals

SALUTE E BENESSERE