

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Genetica dello Sviluppo e del Differenziamento

2425-1-F0601Q076

Obiettivi

Conoscenza e capacità di comprensione

Il corso intende familiarizzare gli studenti con concetti e approcci sperimentali relativi a problematiche genetiche attuali riguardanti il controllo trascrizionale in cellule eucariotiche nello sviluppo e nel differenziamento cellulare, nel normale e in esempi di patologia.

Conoscenza e capacità di comprensione applicate

Gli approcci sperimentali, la "costruzione" dell'esperimento e l'interpretazione dei dati saranno oggetto di particolare attenzione; il materiale primario del corso saranno articoli originali.

Autonomia di giudizio

Verrà perseguito lo sviluppo di senso critico riguardo all'interpretazione dei dati sperimentali, e allo sviluppo di connessioni diversificate tra gli argomenti trattati

Abilità comunicative

Si perseguirà la comprensione di come le nuove conoscenze ottenute attraverso il metodo sperimentale vadano presentate, mediante discussione di articoli originali, frequenza a seminari di ricerca, e possibile presentazione e discussione di articoli scientifici da parte degli studenti.

Capacità di apprendere

L'apprendimento sarà mediante il confronto diretto con la ricerca e i suoi risultati, piuttosto che mediante libri di testo.

Contenuti sintetici

Il corso presenterà, attraverso l'illustrazione e l'analisi di lavori scientifici, le problematiche genetiche che riguardano:

- Il controllo della trascrizione in cellule eucariotiche;
- Lo sviluppo embrionale dei vertebrati (sistema emopoietico; muscolo; sistema nervoso; cellule pluripotenti dell'embrione precoce);
- La modificazione mirata del genoma, e il suo utilizzo nei modelli genetici in topo.

Programma esteso

Problematiche genetiche dello sviluppo embrionale e del differenziamento tessuto-specifico nei vertebrati.

1) Mutazioni mirate nel genoma di topo per lo studio funzionale dei geni.

Transgenesi; gene targeting in cellule staminali embrionali; differenziazione in vitro di cellule staminali; approcci CRISPR/Cas.

2A) Sistema ematopoietico e sua embriogenesi.

Mutanti in geni per fattori trascrizionali e studio del loro ruolo in: programmi differenziativi tessuto-specifici (es. eritroide); scelta del destino cellulare e suoi meccanismi (es. granulocita vs. macrofago; destino linfoide tramite restrizione di scelte alternative); origine e mantenimento di cellule staminali ematopoietiche.

2B) Sistema muscolare e miogenesi.

Un "master gene" può attivare l'intero programma differenziativo muscolare: myoD e i geni miogenici. Topi mutanti per fattori trascrizionali miogenici; azione dei geni nel differenziamento muscolare (determinazione, migrazione, miogenesi), gerarchie di geni regolatori; ridondanza. Geni che controllano le cellule staminali muscolari e cellule satelliti.

2C) Sistema nervoso e sua embriogenesi

Cellule staminali neurali, loro proliferazione e differenziamento neuronale e gliale. Regionalizzazione del tubo neurale. Meccanismi genetici nel differenziamento regione-specifico dei neuroni. L'esempio del midollo spinale: gradienti di molecole segnale e attivazione di combinazioni di fattori trascrizionali. Meccanismi genetici nella specificazione delle aree della corteccia cerebrale. Specificazione genetica dell'identità posizionale: mutanti omeotici. Controllo genetico dello sviluppo orientato degli assoni e della connettività neuronale.

2D) Cellule pluripotenti dell'embrione precoce

Identificazione di geni per fattori trascrizionali che controllano la pluripotenza (capacità di generare tutti i tipi cellulari dell'embrione), e loro meccanismi molecolari d'azione. Fattori di pluripotenza e riprogrammazione genetica di cellule differenziate a cellule staminali pluripotenti (cellule iPS).

3) Meccanismi genetici molecolari del controllo trascrizionale in cellule eucariotiche

Espressione genica differenziale nello sviluppo embrionale e nel differenziamento cellulare: metodi di studio. Livelli di regolazione dell'espressione genica. Identificazione e studio di sequenze regolatrici della trascrizione: metodi ed esempi (interazione proteine regolatrici/DNA; approcci della genomica funzionale, progetto ENCODE; saggi funzionali in animali transgenici).

Combinazione di siti di legame per fattori trascrizionali nella programmazione dell'espressione genica nello sviluppo e nel differenziamento: esempi dalla regolazione dei geni dello sviluppo dell'occhio in specie diverse. Modificazioni covalenti regolative degli istoni e interazioni con i fattori trascrizionali. Enhancers e isolatori. I diversi livelli di organizzazione della regolazione genica in aione: l'esempio dei geni globinici. Talassemie da delezione e sequenze regolatrici ad azione long-range: "locus control region" e suo meccanismi d'azione. Organizzazione spaziale 3-D e compartimentalizzazione nucleare della regolazione genica: "active chromatine hubs", "transcription factories". Trascritti intergenici e long noncoding RNAs.

Modificazioni allosteriche nella funzione di fattori trascrizionali: esempi dalla regolazione genica dello sviluppo dell'ipofisi.

Prerequisiti

Solide basi di genetica generale, biologia molecolare e cellulare.

Modalità didattica

Lezioni frontali in classe, con discussione mediante domande degli studenti e discussione di problemi emergenti; 1 cfu circa sarà inoltre devoluto a lavoro interattivo, sotto forma di presentazione, da parte degli studenti, di lavori scientifici originali, e discussione con la classe.

Materiale didattico

Articoli scientifici originali illustrati durante il corso.

Testi di consultazione:

Genetica, II edizione, edito da D. Ghisotti e G. Binelli, EdiSES, capitoli 19 (Genetica dello sviluppo animale) e 17 (Regolazione dell'espressione genica negli eucarioti)

Scott Gilbert, Developmental Biology, Sinauer (trad. Italiana: Biologia dello sviluppo, Zanichelli)(edizione più recente possibile)

Tom Strachan, Andrew Read, Human Molecular Genetics (trad. Italiana: Genetica Molecolare Umana, Zanichelli) (edizione più recente possibile).

Le diapositive mostrate in classe saranno disponibili via elearning.

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

La valutazione sarà tramite un esame orale, che potrà avere inizio (a discrezione dello studente) con l'esposizione e discussione di un articolo scientifico a scelta (tra vari proposti in anticipo dal docente), seguita da due domande su un diverso aspetto del corso, e discussione relativa. Non sono previste prove in itinere.

Orario di ricevimento

Su appuntamento, silvia.nicolis@unimib.it o concordato a lezione

Sustainable Development Goals

SALUTE E BENESSERE