

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Introduction to Plasma Boundary in Fusion Devices

2425-1-113R-05

Titolo

Advanced plasma physics: waves in inhomogeneous plasmas and kinetic description

Docente(i)

Prof. Alberto Mariani

Lingua

English

Breve descrizione

Il corso si propone di introdurre le principali instabilità che governano la microturbolenza alle scale ioniche in plasmi di interesse per la fusione termonucleare

controllata. Tale argomento è alla base del modelling del trasporto di calore, particelle e momento nei tokamak, essenziale per permettere di raggiungere le condizioni di fusione. In particolare, la drift wave e gli ion temperature gradient (ITG) modes verranno trattati in dettaglio, sviluppando competenze nell'analisi di onde che si propagano in plasmi non omogenei.

• Introduzione al modelling del trasporto di calore e particelle in plasmi da fusione;

- Microturbolenza e instabilità di plasma alle scale ioniche ed elettroniche;
- Richiamo sui moti di drift di particelle in compi di forza esterni o soggetti a gradiente di pressione (drift diamagnetico);
- Trattazione cinetica delle instabilità: relazione di dispersione in geometria slab (stato di equilibrio, soluzione dell'equazione di Vlasov linearizzata, calcolo della funzione dielettrica);
- Instabilità 'drift wave' (modello a due fluidi, trattazione cinetica);
- Ion temperature gradient (ITG) modes (modello a due fluidi, trattazione cinetica);
- Opzionale, materiale aggiuntivo: Breve introduzione a fenomeni di interesse al di fuori dell'ambito della
 fusione nucleare: 'Modello di Parker del vento solare', 'Laser wakefield acceleration' (utilizzo delle
 proprietà delle onde nei plasmi per produrre fasci di elettroni di decine di GeV con pochi centimetri di
 accelerazione) e 'magneto-rotational instability' (MRI, instabilità di plasma che si riscontra tipicamente in
 sistemi astrofisici a simmetria cilindrica che si trovano in uno stato di rotazione differenziale in presenza di
 campo magnetico, come ad esempio i dischi di accrescimento);

CFU / Ore

2 CFU / 16 hours

Periodo di erogazione

March 2025

Sustainable Development Goals

ENERGIA PULITA E ACCESSIBILE