

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Laboratorio di Caratterizzazione Strumentale

2526-3-ESM01Q015

Obiettivi

L'obiettivo dell'insegnamento è l'introduzione alle tecniche spettroscopiche e metodologie di analisi utilizzate per lo studio delle più importanti classi di materiali.

Conoscenze e capacità di comprensione

Al termine del corso lo studente conosce le principali tecniche analitiche, specialmente la spettroscopia di Risonanza Magnetica Nucleare in soluzione e allo stato solido, la Spettroscopia Infrarossa, la Spettroscopia UV-vis, i metodi calorimetrici e termogravimetrici, e la diffrazione di raggi-X da cristallo singolo e da polveri policristalline.

Conoscenza e capacità di comprensione applicate

Al termine del corso lo studente è in grado di analizzare ed interpretare i dati sperimentali ottenuti durante le esperienze di laboratorio:

1) spettri di Risonanza Magnetica Nucleare registrati in soluzione e allo stato solido, 2) spettri di Spettroscopia Infrarossa, 3) tracciati di analisi calorimetriche, 4) diffrattogrammi di polveri policristalline.

Autonomia di giudizio

Al termine del corso lo studente è in grado di individuare i metodi di caratterizzazione chimica più adatti alla descrizione dei materiali di interesse.

Abilità comunicative

Saper esporre con proprietà di linguaggio i temi trattati durante il corso e descrivere in una relazione scientifica in modo chiaro e sintetico il procedimento e i risultati delle esperienze condotte in laboratorio.

Capacità di apprendere

Essere in grado di applicare le conoscenze acquisite a contesti differenti da quelli presentati durante il corso e di comprendere gli argomenti trattati nella letteratura scientifica riguardante le tecniche di caratterizzazione descritte durante il corso.

Contenuti sintetici

Il Corso consiste in lezioni teoriche ed esperienze in laboratorio. Il Corso comprende i principi generali delle principali tecniche analitiche, specialmente la spettroscopia di Risonanza Magnetica Nucleare in soluzione e allo stato solido, la Spettroscopia Infrarossa, i metodi calorimetrici, e la diffrazione di raggi-X da cristallo singolo e da polveri policristalline. Inoltre il corso ricomprende l'acquisizione ed interpretazione di

- 1) spettri di Risonanza Magnetica Nucleare in soluzione e allo stato solido,
- 2) spettri di Spettroscopia Infrarossa e UV-vis
- 3) tracciati di analisi calorimetriche e termogravimetriche
- 4) diffrattogrammi di polveri policristalline
- e analisi quantitativa dei dati sperimentali.

Programma esteso

Il corso comprende un inquadramento generale sulle metodologie più appropriate per l'analisi delle differenti classi di materiali e cenni sui metodi di raccolta dei dati sperimentali, seguito dallo svolgimento di esperienze in laboratorio mediante l'utilizzo di alcune tecniche analitiche e di riconoscimento strutturale. L'attività di laboratorio sarà preceduta da un ciclo di lezioni per richiamare i principi generali su cui si basa ciascuna tecnica, la descrizione di metodologie strumentali, di raccolta e di interpretazione dei dati specifici, e lo svolgimento di analisi qualitative e quantitative. Gli studenti svilupperanno la capacità di elaborazione anche mediante l'uso di opportuni software. Verranno presi in considerazione alcune categorie di materiali ed esplorate le tecniche più opportune per la caratterizzazione e l'analisi quantitativa. In particolare, sono previste le seguenti esercitazioni:

- Diffrazione di raggi-X su sistemi policristallini. Raccolta e interpretazione dei diffrattogrammi (per esempio quarzo), identificazione della cella cristallina, e affinamento dei parametri reticolari con il metodo dei minimi quadrati. Quantificazione delle fasi cristalline in sistemi a più componenti o contenenti più polimorfi. Diffrazione di raggi-X su monocristallo. Raccolta dati, risoluzione e affinamento strutturale, determinazione della struttura cristallina. Analisi del diffrattogramma da cristallo singolo (reticolo reciproco) e determinazione di relazioni con la simmetria presente nel cristallo.
- NMR in soluzione. Preparazione del campione, raccolta degli spettri, trasformazione del segnale dal dominio dei tempi al dominio delle frequenze e interpretazione degli spettri con particolare riguardo al nucleo 1H. Durante l'esperienza in laboratorio gli studenti apprenderanno la metodologia per acquisire gli esperimenti che permettono di identificare la struttura molecolare.
- NMR stato solido. Tecniche di ottenimento dello spettro per rotazione all'angolo magico, cross polarization e disaccoppiamento ad alta potenza sui nuclei di carbonio-13 e silicio-29. Interpretazione della molteplicità dei segnali e simmetria. I segnali acquisiti su questi nuclei permetteranno di identificare le microfasi organiche ed inorganiche e la loro evoluzione in un sistema reattivo prescelto.
- Spettroscopia Infrarossa e UV-vis. Applicazioni allo studio di materiali organici e riconoscimento dei principali gruppi funzionali. Saranno utilizzate le stesse sostanze di cui è stata determinata precedentemente la struttura cristallina.

- Analisi termogravimetrica abbinata alla spettrometria di massa. Rilascio ed identificazione di specie volatili adsorbite su materiali, studio di processi reattivi e riconoscimento delle specie emesse.

Prerequisiti

Gli studenti dovranno avere maturato la conoscenza dei principi fondamentali della chimica e della fisica.

Modalità didattica

Le lezioni e le attività di laboartorio saranno svolte in italiano. 17 lezioni frontali da 2 ore e 1 lezione frontale da 1 ora svolte in modalità erogativa in presenza. 9 attività di laboratorio da 4 ore svolte in modalità interattiva in presenza.

Materiale didattico

Si suggeriscono i seguenti libri e materiale di supporto:

- 1) Chimica Analitica Strumentale K. A. Rubinson, J. F. Rubinson Zanichelli
- 2) Understanding NMR spectroscopy, Understanding NMR spectroscopy, J. Keeler, Wiley 2010
- 3) NMR of Polymers, F. A. Bovey and P. Mirau, Academic Press.
- 4) Dispense del docente.

Le dispense del docente permetteranno agli studenti di seguire ed approfondire gli argomenti trattati durante le lezioni.

Periodo di erogazione dell'insegnamento

III anno - I semestre

Modalità di verifica del profitto e valutazione

Colloquio orale sugli argomenti svolti a lezione, alle esercitazioni e sulla relazione tecnica volto a verificare il livello delle

conoscenze acquisite, l'autonomia di analisi e giudizio, le capacità espositive dello studente L'esame orale tratterà i seguenti argomenti:

1. gli aspetti teorici delle più importanti tecniche di analisi spettroscopiche e diffrattometriche

- 2. l'interpretazione degli spettri raccolti durante le esercitazioni e quelli di alcune molecole modello.
- 3. verrà analizzata e discussa la relazione scritta delle esperienze di laboratorio.

Orario di ricevimento

Su appuntamento.

Sustainable Development Goals

CONSUMO E PRODUZIONE RESPONSABILI