

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Properties and Applications of Polymeric Materials

2526-3-ESM01Q018

Obiettivi

Lo scopo del corso è di far familiarizzare gli studenti con concetti rilevanti nella chimica dei polimeri come la caratterizzazione di polimeri e le distribuzioni di peso molecolare; la termodinamica di soluzioni polimeriche; lo stato cristallino e amorfo; l'elasticità della gomma; relazione struttura-proprietà. Verranno inoltre presentati argomenti speciali dei materiali polimerici come i copolimeri a blocchi e polimeri naturali.

Applicazione della conoscenza:

• Acquisizione della capacità di applicare le nozioni apprese nel corso alla descrizione efficace di polimeri di interesse applicativo ed industriale

Competenze comunicative:

• Acquisizione di capacità comunicative verbali e scritte in concetti relativi alla struttura gerarchica dei polimeri dal livello molecolare a quello macroscopico.

Elaborazione di giudizi:

• Lo studente acquisirà la competenza di associare la principali carattetirsctiche di un polimero (temperatura di transizione vetrosa, temperatura di fusione, viscosistà e modulo elastico) all'architettura molecolare dello stesso.

Competenze di apprendimento

• Lo studente è in grado di estendere quanto appreso nelle lezioni a casi di studio non trattati durante il corso. In particolare è in

grado di gestire i datasheetd di polimeri di interesse industriale

Contenuti sintetici

Termodinamica delle soluzioni polimeriche. Teoria di Flory-Huggings . Conformazione delle catene in soluzione: polimeri flessibili e rigidi. Concetto di random coil e raggio di girazione. Miscele polimeriche e diagrammi di fase.

Sintesi e proprietà dei copolimeri a blocchi. Lo stato cristallino dei polimeri: lamelle, sferuliti, fibre. Polimeri semicristallini: polietilene, polipropilene iso- e sindiotattico. Polimeri liquido cristallini. Polimeri reticolati ed elasticità della gomma. Comportamento meccanico dei polimeri. Viscoelasticità e reologia dei polimeri: misure di creep, tempi di rilassamento. Polisaccaridi e materiali a base proteica.

Programma esteso

Conformazioni dei Polimeri, end-to –end distance, lunghezza di persistenza, catene semiflessibili e catene rigide, raggio di girazione, dendrimeri, polimeri ramificati

Termodinamica delle soluzioni polimeriche, entropia ed entalpia di miscelamento, Teoria di Flory-Huggings, parametro X

Pressione osmotica, osmometria, Teoria di Flory Hugging della pressione osmotica, parametro B, concetto di solvente q

Diagramma di fase di soluzioni polimeri, binodale, spinodale e punto critico

Copolimeri a blocchi in soluzione ed allo stato solido

Dinamica delle soluzioni polimeriche, frizione e viscosità, fluidi Newtoniani e Non-Newtoniani, legge di Stokes, viscosità di soluzioni polimeriche diluite, equazione di Mark- Houwink, difffusione e relazione di Stokes-Einstein, polimerizzazione in emulsione

Elasticità della gomma, vulcanizzazione della gomma naturale, proprietà meccaniche, termodinamica dell'elasticità.

Proprietà Meccaniche: misure di creep, di rilassamento, plateau gommoso, elemento di Maxwell, elemento di Voigt

Polimeri semicristallini, conformazione ad elica, termodinamica della cristallizzazione, lamelle, sferuliti,

Materiali polimerici a base di carboidrati, cellulosa, emicellulosa, acetato di cellulosa, amido, agar

Materiali polimerci a base di proteine, lana, seta, keratina, collagene

Prerequisiti

Conoscenze di base di chimica dei polimeri quali il concetto di catena polimerica, peso molecolare medio, semplici metodi di polimerizzazione

Modalità didattica

24 lezioni di due ore ciascune in presenza in lingua italiana. In caso di presenza di incoming students il corso potrà essere erogato in lingua inglese.

Materiale didattico

Testi:

"Polymer Chemistry" (Second Edition) P.C. Hiemenz, T.P. Lodge, CRC Press.

"Introduction to Physical Polymer Science" (Fourth Edition), L.H. Sperling, Wiley"

Presentazioni powerpoint con i contenuti delle varie lezioni

Periodo di erogazione dell'insegnamento

Secondo semestre

Modalità di verifica del profitto e valutazione

L'esame consiste in una prova orale in cui sono discussi gli argomenti presentati nelle lezioni. Oltre all'apprendimento delle nozioni fondamentali esposte nel corso, vengono valutate anche le capacità e attitudini dello studente ad adattare i fondamenti teorici della chimica dei polimeri a particolari condizioni operative e pratiche (per esempio la differenze di proprietà meccaniche tra una gomma e un termoplastico, oppure l'origine molecolare dell'elasticità della gomma); viene infine valutata la capacità espositiva e adeguatezza del linguaggio dello studente.

Vengono inoltre effettuate due prove intermedie (con la risoluzione di esercizi e la risposta a domande) alla metà dello svolgimento del corso ed alla fine del corso; ogni prova comprende 10 tra domande ed esercizi; gli studenti che ottengono esito positivo in entrambe le prove (per ogni esercizio o domanda vengono attribuiti da 0 a 10 punti, si considera esito positivo il superamento dei 50 punti) possono sostenere una prova orale ridotta, in cui vengono discussi le domande e gli esercizi delle due prove intermedie.

Orario di ricevimento

Martedi ore 14:00-16:00 nel ufficio del docente

Sustainable Development Goals

CONSUMO E PRODUZIONE RESPONSABILI