

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Introduzione alle Tecniche di Laboratorio

2526-2-E1301Q079

Obiettivi

Questo insegnamento si propone di fornire agli studenti una conoscenza di base delle più comuni tecniche biochimiche e del DNA ricombinante. Il corso mira inoltre a illustrare la complementarietà tra le strategie di clonaggio, la produzione, purificazione e caratterizzazione (strutturale e funzionale, con particolare enfasi sull'attività enzimatica) delle proteine ricombinanti.

Conoscenza e capacità di comprensione - al termine dell'insegnamento lo studente dovrà conoscere i principi teorici delle principali tecniche di laboratorio biochimico e di tecniche di base per la manipolazione del DNA ricombinante.

Capacità di applicare conoscenza e comprensione - al termine dell'insegnamento lo studente dovrà essere in grado di applicare le conoscenze acquisite nella scelta di un approccio sperimentale per il clonaggio di DNA, la produzione, purificazione e caratterizzazione di proteine; tali conoscenze verranno anche applicate nei corsi successivi, in particolare nel corso di Laboratorio Integrato di Biologia (LIB).

Autonomia di giudizio - al termine dell'insegnamento, lo studente sarà in grado di riconoscere e comprendere i passaggi principali di un protocollo di clonaggio di DNA plasmidico, produzione di proteine ricombinanti, purificazione e caratterizzazione strutturale di proteine.

Abilità comunicative - alla fine dell'insegnamento lo studente avrà acquisito un vocabolario tecnico-scientifico adeguato e saprà esporre con proprietà di linguaggio gli argomenti trattati nel corso.

Capacità di apprendimento - alla fine dell'insegnamento è atteso che lo studente sia in grado di comprendere e riconoscere le metodologie apprese in diversi contesti (ad esempio, in articoli scientifici, relazioni e protocolli sperimentali).

Contenuti sintetici

- 1. Metodi del DNA ricombinante per il clonaggio e la produzione di proteine ricombinanti
- 2. Tecniche preparative per l'estrazione e l'arricchimento di proteine
- 3. Tecniche elettroforetiche ed immunochimiche
- 4. Tecniche per il dosaggio delle proteine e dell'attività enzimatica
- 5. Tecniche preparative per la purificazione di proteine
- 6. Alcune tecniche spettroscopiche per l'analisi conformazionale delle proteine

Programma esteso

- 1. Metodi del DNA ricombinante, per il clonaggio e la produzione di proteine ricombinanti. Strategia di produzione di proteine ricombinanti; Clonaggio genico con enzimi di restrizione e di ligazione; Scelte di vettori e di ospiti di clonaggio; Amplificazione del DNA (polymerase chain reaction); Metodi di estrazione del DNA plasmidico; Elettroforesi del DNA; Elettroforesi capillare; Sequenziamento del DNA con metodo di Sanger.
- 2. Tecniche preparative per l'estrazione e l'arricchimento di proteine. Tecniche centrifugative e di ultrafiltrazione; Precipitazione e frazionamento in ammonio solfato; Tecniche di lisi cellulare e centrifugazione frazionata.
- **3. Tecniche elettroforetiche ed immunochimiche.** Elettroforesi in condizioni native e denaturanti (SDS-PAGE); Western blotting; Introduzione alle tecniche immunochimiche; Immunoprecipitazione, ELISA
- **4. Tecniche per il dosaggio delle proteine e dell'attività enzimatica.** Dosaggio della concentrazione proteica; Saggi di attività enzimatica; Tabella di purificazione.
- **5. Tecniche preparative per la purificazione di proteine.** Introduzione alle tecniche cromatografiche; Introduzione alle tecniche cromatografiche; Cromatografia di esclusione molecolare; Cromatografia a scambio ionico; Cromatografia di interazione idrofobica e reverse phase; Cromatografia di affinità; HPLC ed FPLC; Valutare l'andamento di una purificazione.
- **6. Tecniche biofisiche per l'analisi conformazionale delle proteine.** Introduzione alla spettrofotometria e assorbimento in UV-vis; Spettroscopia di dicroismo circolare; Spettrofluorimetria; Tecniche di fluorescence resonance energy transfer (FRET).

Prerequisiti

È necessaria la conoscenza di concetti basilari di fisica, chimica generale ed organica. I principi chimico-fisici e le nozioni di biochimica essenziali per la comprensione delle diverse metodologie verranno esposti brevemente o ricapitolati all'inizio delle lezioni.

Modalità didattica

L'insegnamento prevede 24 lezioni (6 CFU) che si svolgeranno in modalità mista. Le lezioni saranno sia 'erogative' (convenzionali, in presenza) sia 'interattive', promuovendo la partecipazione attiva e il coinvolgimento degli studenti nell'analisi e interpretazione di metodi sperimentali. Il materiale di studio includerà *protocol book*, riviste di metodologia scientifica e articoli scientifici.

Ciascuna lezione sarà supportata da presentazioni PowerPoint, video e analisi di metodi sperimentali. In base alle richieste degli studenti frequentanti, potranno essere introdotti nuovi argomenti di studio.

In base al numero e alle richieste degli studenti frequentanti, potranno essere svolti lavori di gruppo, volti all'analisi di metodi sperimentali ed alla loro complementarietà.

Materiale didattico

Libri di testo:

- K. Wilson & J. Walker (2000) "Biochimica e Biologia Molecolare" Cortina, 2006
- M. C. Bonaccorsi di Patti, R. Contestabile, M. L. Di Salvo "Metodologie Biochimiche" Casa Editrice Ambrosiana, 2012

Materiale didattico reperibile sulla pagina Moodle dell'insegnamento:

- Slide delle lezioni
- Domande ed esercizi d'esame
- · Articoli scientifici selezionati dal docente

Periodo di erogazione dell'insegnamento

Secondo semestre

Modalità di verifica del profitto e valutazione

Esame scritto + orale.

L'esame consiste in una prova scritta (60 minuti) e una prova orale (circa 20 minuti).

La prova scritta comprende quesiti a risposta multipla ed esercizi, con un punteggio massimo di 15 punti. Per essere ammessi alla prova orale, è necessario ottenere un minimo di 10 punti.

La prova orale si basa su due o tre domande relative all'intero programma, con un punteggio massimo di 15 punti. Il voto finale è la somma dei punteggi ottenuti nella prova scritta e in quella orale. La soglia di sufficienza per il superamento dell'esame è fissata a 18 punti.

Entrambe le prove mirano a valutare le conoscenze teoriche, la capacità di interpretare dati sperimentali e di stabilire relazioni tra tecniche e approcci sperimentali diversi. Verranno inoltre valutate le capacità espositive e l'uso di un linguaggio scientificamente e tecnicamente appropriato.

Non sono previste prove in itinere.

Orario di ricevimento

Su appuntamento, per mail a stefania.brocca@unimib.it

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ

