

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Chimica Analitica Strumentale e Laboratorio

2526-3-E2702Q058

Obiettivi

Obiettivo principale dell'insegnamento è fornire allo studente i fondamenti teorici e gli strumenti operativi fondamentali di un varietà di tecniche utili nella chimica analitica moderna e necessarie per la determinazione qualitativa e quantitativa della natura chimica di un campione di materia. La conoscenza dei principi e della strumentazione delle principali tecniche analitiche verrà sviluppata insieme alla capacità di scegliere e di gestire la strumentazione più adatta alle finalità dell'analisi. Lo studente saprà quindi valutare le caratteristiche strumentali degli approcci analitici fondamentali, i campi di applicazione, i vantaggi e gli svantaggi delle singole tecniche analitiche e sarà quindi in grado di suggerire la scelta della tecnica analitica ritenuta più idonea per uno specifico problema.

In particolare, lo studente dovrà dimostrare di aver raggiunto i seguenti obiettivi formativi:

Conoscenza e capacità di comprensione: al termine del corso lo studente conosce basi teorico e pratiche delle più moderne tecniche analitiche strumentali (tecniche spettroscopiche UV-vis, IR, NMR, AAS, ICP OES, spettrometria di massa, metodi cromatografici) e i metodi di pre-trattamento del campione.

Capacità di applicare conoscenza e comprensione. Al termine del corso lo studente è in grado di: sapere affrontare e risolvere problemi analitici; sapere confrontare tecniche diverse per uno stesso scopo, valutando la tecnica più adatta da applicare al contesto; acquisire e saper utilizzare un lessico chimico appropriato in relazione agli argomenti affrontati nel corso; utilizzare la strumentazione analitica, in modo particolare quella impiegata durante le esperienze di laboratorio (UV-Vis, Spettrofluorimetro, GFAAS, ICP OES, HPLC-DAD, GC-MS)

Autonomia di giudizio. Al termine del corso lo studente è in grado di: scegliere la tecnica analitica più opportuna per risolvere un dato problema analitico; redigere e giustificare una relazione critica sui metodi analitici utilizzati e le informazioni ottenute dall'analisi del dato

Capacità di apprendimento. Al termine del corso lo studente è in grado di: comprendere i principi della chimica analitica strumentale studiati e la loro collocazione metodologica al fine di un impiego corretto e mirato al problema da risolvere; prevedere quale tipo di informazione sarà possibile enucleare dai dati in esame; valutare la possibilità

di metodi analitici alternativi per la soluzione del problema.

Abilità comunicative. Al termine del corso lo studente è in grado di: saper descrivere in forma scritta in modo chiaro e sintetico ed esporre oralmente con proprietà di linguaggio chimico appropriato gli obiettivi, il procedimento ed i risultati delle elaborazioni effettuate; effettuare in modo collaborativo il lavoro sperimentale di laboratorio e lo sviluppo delle analisi del risultato analitico.

Contenuti sintetici

Spettroscopia: introduzione alla spettroscopia, spettri di assorbimento, emissione ed eccitazione. Componenti strumentali degli spettrofotometri FT-IR e spettrofluorimetri: struttura della strumentazione, sorgenti, monocromatori, rivelatori e elaborazione del segnale. Applicazioni quantitative e qualitative. Spettroscopia di fluorescenza. Accenni di spettroscopia NIR.

Spettroscopia di assorbimento atomico a fiamma e con fornetto di grafite, spettroscopia di emissione atomica, plasma accoppiato induttivamente, ICP OES, ICP MS. Applicazioni qualitative e quantitative.

Cromatografia: principi generali. Cromatografia Gas-Liquido, Liquido-Liquido, Ionica: iniettori, colonne e rivelatori. Cenni di cromatografia di esclusione e di affinità. Applicazioni della cromatografia.

Spettrometria di massa: principi generali, metodi di ionizzazione (EI, CI, FAB, MALDI, ESI, APCI), analizzatori (quadrupolo, TOF, trappola ionica, FT-MS, orbitrap). Applicazioni qualitative e quantitative.

NMR: lo spin nucleare, il principio della risonanza magnetica, componenti di uno spettrometro NMR. Spettroscopia NMR di 1H: chemical shift, schermo chimico, accoppiamento chimico, spettri di primo ordine e di ordine superiore. Trasformata di Fourier. Spettroscopia del 13C: disaccoppiamento dal protone; esempi di interpretazione di spettri di molecole organiche.

Esperienze pratiche in laboratorio, per illustrare l'uso della strumentazione analitica descritta nel corso in applicazioni qualitative e quantitative.

Programma esteso

Introduzione alla spettroscopia, equazioni e proprietà della radiazione elettromagnetica. Caratteristiche degli spettri di assorbimento UV-visibile ed IR. Transizioni vibrazionali e modello dell'oscillatore armonico. Definizione del numero teorico di deformazioni vibrazionali.

Componenti strumentali per la spettrofotometria: sorgenti, monocromatori, filtri, celle porta campione, acquisizioni in riflettanza interna ed esterna, fibra ottica, interferometro di Michelson e trasformata di Fourier, rivelatori (tubi fotomoltiplicatori, diode array, dispositivi ad accoppiamento di carica). Spettrofotometri a singolo raggio, doppio raggio, e multicanale. Errori nella lettura dell'assorbanza: precisione relativa sull'assorbanza e range dinamico. Specifiche per l'acquisizione del segnale in spettrofotometri FT-IR e definizione del Signal-to-Noise ratio.

Spettroscopia di assorbimento IR: applicazioni qualitative e quantitative. Fattori che determinano l'aumento o la riduzione del numero di bande nello spettro; degenerazione, accoppiamento e bande di overtone; vibrazioni di stretching e bending; fattori che determinano intensità e frequenza di un banda di assorbimento; regioni caratteristiche dello spettro IR; accenno all' interpretazione degli spettri IR; operazioni di background e post processing sugli spettri IR; limitazioni delle applicazioni quantitative della spettroscopia IR; accenno alla spettroscopia NIR (vicino infrarosso), alla strumentazione NIR, all'acquisizione del segnale e alle applicazioni in

campo industriale.

Spettroscopia di fluorescenza: spettri di eccitazione ed emissione; relazione tra gli spettri di emissione e gli spettri di assorbimento; relazione tra spettri di emissione ed eccitazione; caratteristiche dei composti fluorescenti; relazione tra intensità di fluorescenza e concentrazione, limiti di applicabilità per mantenere la relazione lineare; struttura di uno spettrofluorimetro: sorgenti, monocromatori, celle porta campione, rivelatori. Applicazioni della spettroscopia di fluorescenza.

Spettroscopia di assorbimento atomico, spettroscopia di emissione atomica: diagrammi dei livelli energetici, spettri atomici di emissione, spettri atomici di assorbimento, larghezza riga atomica, allargamento riga per effetto indeterminazione, allargamento per effetto Doppler, allargamento da pressione, effetto della temperatura. Metodi di introduzione del campione in soluzione: nebulizzatori pneumatici, nebulizzatori ad ultrasuoni, vaporizzatori termoelettrici, tecniche per la formazione di idruri. Atomizzazione del campione, a fiamma, termoelettrica, a vapori freddi. Sorgenti: lampada a catodo cavo, lampada a scarica senza elettrodi, modulazione della sorgente, strumento a singolo e doppio raggio. Interferenze spettrali, correzione per lampada D, per effetto Zeeman, per autoinversione della sorgente. Interferenze chimiche (composti a bassa volatilità, equilibri dissociazione, equilibri di ionizzazione), modificatori di matrice.

Sorgente al plasma accoppiato induttivamente. Schema ICP OES radiale, assiale. Tipi di rivelatori. Elementi da analizzare, selezione righe. Interferenze. ICP MS. Preparazione del campione.

Introduzione alle separazioni analitiche e alle separazioni cromatografiche. Classificazione dei metodi cromatografici. Cromatografia di eluizione su colonna. Definizione di cromatogramma. Caratteristiche della colonna cromatografica; costanti di distribuzione, tempi di ritenzione, fattore di ritenzione, fattore di selettività. Efficienza della colonna cromatografica e sua descrizione; definizione di altezza dei piati e numero dei piatti teorici. Fattori che determinano l'efficienza della colonna cromatografica. Equazione di Van Deemter. Risoluzione della colonna cromatografica ed effetto dei fattori sulla risoluzione.

Cromatografia Gas-Liquido; introduzione alla cromatografia Gas-Liquido, il processo separativo in gas cromatografia; sistema di iniezione, colonne e loro caratteristiche, colonne capillari e impaccate, fasi stazionarie liquide, rivelatori a ionizzazione di fiamma (FID), rivelatori a conducibilità termica (TCD), rivelatori a cattura di elettroni (ECD). Applicazioni della cromatografia Gas-Liquido.

Cromatografia Liquido - Liquido: caratteristiche del cromatografo; sistemi di pompaggio e di iniezione del campione. Tipologie di colonne. Caratteristiche della fase stazionaria. Il processo di eluizione (isocratica e a gradiente). Rivelatori. Cromatografia Ionica. Cenni di cromatografia di ripartizione, adsorbimento, esclusione e di affinità.

Spettrometria di massa: principi della spettrometria di massa, ionizzazione elettronica, definizione di spettro di massa; tipologie di spettrometri di massa (quadrupolo, a tempo di volo, a trappola ionica, orbitrap); componenti di uno spettrometro di massa: sistemi di vuoto, sistema di iniezione, metodi di ionizzazione (EI, CI, FAB, MALDI, ESI, APCI), analizzatore di massa (quadrupolo, TOF, Trappola ionica, FT-MS, orbitrap), spettrometria di massa tandem e analizzatori ibridi, rivelatori. Interfacce cromatografia – spettrometria di massa. Risoluzione degli spettrometri di massa e tipologie degli analizzatori di massa. Accenni alla spettrometria di massa atomica e spettrometria di massa molecolare. Applicazioni qualitative della spettrometria di massa (riconoscimento molecolare) e quantitative (tecniche ifenate con cromatografi o ICP MS).

Basi fisiche della risonanza magnetica. Concetto di spin nucleare, numero quantico di spin, campo magnetico principale, frequenza di Larmor, popolazione dei livelli di spin. Sistema di riferimento del laboratorio, sistema di riferimento rotante, impulso di radiofrequenza, impulso 90°, Free Induction Decay (FID). Schema di un spettrometro NMR. Preparazione del campione, tuning, shimming. Scelta del solvente deuterato. Acquisizione del FID e trasformata di Fourier.

Spettroscopia 1H NMR. Definizione di chemical shift e fattori che lo determinano: contributo diamagnetico e contributo di anisotropia magnetica. Interazione spin-orbita. Concetto di sistema di spin. Multipletti del 1° ordine ed

intensità relativa (triangolo di Pascal. Accoppiamento con eteronuclei. Atomi omotopici, enantiotopici, diastereotopici. Concetto di equivalenza magnetica. Esercizi per la determinazione dei sistemi di spin generati da composti organici.

Spettroscopia ¹³C NMR. Chemical shift dei vari gruppi funzionali, accoppiamento con i protoni, spettri disaccoppiati. Spettri non quantitativi e spettri quantitativi. Descrizione della sequenza di impulsi INEPT. Infine alcune lezioni saranno interamente dedicate all'interpretazione di spettri NMR di molecole organiche.

Le esperienze pratiche in laboratorio comprendono le sei seguenti attività: determinazione della caffeina nella cocacola tramite cromatografia liquida ad alta prestazione (HPLC-DAD), determinazione spettrofotometrica UV-vis della costante di ionizzazione di un indicatore, determinazione spettrofluorimetrica della vitamina B2 nel latte, determinazione del contenuto di rame nel vino mediante assorbimento atomico, determinazione del contenuto di metalli nel caffè mediante ICP OES, separazione di una miscela di pesticidi mediante GC-MS.

Prerequisiti

Nozioni di base sui fondamenti teorici ed operativi della chimica analitica, chimica generale ed inorganica e chimica organica. Manualità e capacità operativa nelle esperienze pratiche in laboratorio.

Modalità didattica

Il corso si suddivide in una parte di lezioni frontali (modalita' erogativa) trasmesse anche in streaming, in cui vengono fornite le nozioni teoriche sulle tematiche affrontate ed esercitazioni frontali (modalita' interattiva). Durante lo svolgimento del corso, gli studenti seguono sei diverse esperienze pratiche in laboratorio (modalita' interattiva), dove apprendono direttamente l'utilizzo della strumentazione analitica descritta nel corso per applicazioni qualitative e quantitative. Sulla pagina e-learning del corso vengono aggiornate costantemente le slide delle lezioni e resi disponibili contenuti aggiuntivi per approfondimenti su specifici argomenti. Verranno svolte 6 ore di lezione propedeutiche all'attivita' di laboratorio in modalita' erogativa da remoto e 2 ore di lezione frontale (modalita' interattiva) per la discussione dei risultati ottenuti nelle esperienze di laboratorio.

Le attivitá di laboratorio si svolgeranno in presenza: gli studenti verranno divisi in 3 turni da 6 gruppi ciascuno di numerosità compatibile con la massima capienza del laboratorio che ospiterà le esperienze. Ogni studente svolgerà tutte e 6 le esperienze previste.

Materiale didattico

Gli insegnanti forniscono le diapositive delle lezioni del corso e alcuni articoli scientifici per l'approfondimento di specifici argomenti attraverso la piattaforma di e-learning. Oltre a questo materiale, si raccomandano i seguenti libri di testo:

- -D.A. Skoog, F.J. Holler, S.R. Crouch, "Chimica Analitica Strumentale" (EdiSES);
- -D.C. Harris, "Chimica Analitica Quantitativa" (Zanichelli);
- -R.M. Silverstein, F.X. Webster, D.J. Kiemle, D.L. Bryce, "Identificazione spettrometrica di composti organici" (Casa ed. Ambrosiana).

Per ogni esperienza di laboratorio viene fornita attraverso la piattaforma di e-learning una scheda di laboratorio che descrive l'esperienza in modo sintetico. Inoltre, viene fornito ulteriore materiale informativo, che include un documento dettagliato con una descrizione delle basi teoriche e dei metodi operativi dell'esperienza, articoli scientifici per un approfondimento dell'esperienza stessa e le istruzioni operative dello strumento.

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

Per l'ammissione all'esame di profitto e' necessario aver frequentato almeno 5 delle 6 esperienze di laboratorio. E' inoltre necessario aver consegnato individualmente le relazioni relative a tutte e 6 le esperienze di laboratorio entro e non oltre la scadenza fissata.

L'esame consiste in una prova orale in cui sono discussi gli argomenti presentati nelle lezioni e le esperienze di laboratorio (incluse le relazioni). Oltre all'apprendimento delle nozioni fondamentali esposte nel corso, vengono valutate anche le capacità e attitudini dello studente ad adattare i fondamenti teorici della chimica analitica strumentale a particolari condizioni operative e pratiche; viene inoltre valutata la capacità espositiva e adeguatezza del linguaggio dello studente.

Pertanto concorrono alla definizione del voto, il risultato della prova orale, la qualita' di tutte le relazioni di laboratorio, in termini di completezza, accuratezza e chiarezza espositiva e la valutazione relativa al comportamento e alla gestione delle postazioni di lavoro nelle attivita' di laboratorio.

Vengono inoltre effettuate **due prove intermedie** (con test a risposta multipla in aula informatica) alla metà dello svolgimento del corso ed alla fine del corso a cui è necessario iscriversi per poterle sostenere entro la scadenza prestabilita; ogni prova comprende 30 domande; la prima prova comprende domande sugli argomenti esposti nella prima parte (teorica) del corso, la seconda prova analogamente domande su argomenti esposti nella seconda parte (teorica) del corso e sulla parte relativa al laboratorio; gli studenti che ottengono esito positivo in entrambe le prove (almeno 20 domande risposte correttamente) possono sostenere una **prova orale ridotta**, in cui vengono discusse le relazioni di laboratorio e la loro connessione alle tematiche fondamentali del corso. Il voto di partenza nella prova orale ridotta consiste nella media del numero di risposte corrette fornite nelle due prove intermedie. E' possibile sostenere l'orale ridotto in tutte le sessioni di esame previste per l'anno accademico in corso.

Graduazione della votazione:

18-19: preparazione su un numero ridotto di argomenti presenti nel programma del corso e del laboratorio, con capacità di trattazione e analisi limitate che, nel caso della prova orale, emergono solo a seguito dell'aiuto e delle domande del docente; competenza espositiva e lessico non sempre corretti, con una capacità di elaborazione critica limitata;

20-23: preparazione su una parte degli argomenti presenti nel programma del corso e del laboratorio, capacità di analisi autonoma solo su questioni puramente pratiche ed esecutive, uso di un lessico corretto anche se non del tutto accurato e chiaro e di una capacità espositiva a tratti incerta;

24-27: preparazione su un numero ampio di argomenti trattati nel programma del corso e del laboratorio, capacità di svolgere in modo autonomo l'argomentazione e l'analisi critica, capacità di applicazione delle conoscenze ai contesti e collegamento dei temi a casi concreti, uso di un lessico corretto e competenza nell'uso del linguaggio disciplinare;

28 – 30/30L: preparazione completa ed esaustiva sugli argomenti nel programma del corso e del laboratorio, capacità personale di trattazione autonoma e di analisi critica dei temi, capacità di riflessione e autoriflessione e di collegamento dei temi a casi concreti e a diversi contesti, ottima capacità di pensiero critico e autonomo, piena padronanza del lessico disciplinare e di una capacità espositiva rigorosa e articolata, capacità di argomentazione,

riflessione e di autoriflessione, capacità di collegamenti ad altre discipline.

Non è previsto il salto d'appello.

E' possibile sostenere l'esame in lingua inglese.

Orario di ricevimento

Previo appuntamento tramite e-mail, i docenti sono sempre disponibili a ricevere gli studenti nei loro uffici o tramite piattaforma Webex.

Sustainable Development Goals