

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Fisica II

2526-3-E3501Q069

Obiettivi

- 1. Conoscenza e capacità di comprensione
 - Gli studenti acquisiranno una comprensione di base delle equazioni di Maxwell e della relatività ristretta, con particolare attenzione agli aspetti concettuali e al legame tra i fenomeni elettrici, magnetici e relativistici.
- 2. Conoscenza e capacità di comprensione applicate
 - Gli studenti saranno in grado di applicare i principi dell'elettromagnetismo alla risoluzione di semplici problemi di elettrostatica, magnetostatica, induzione elettromagnetica, e circuiti RLC.
- 3. Autonomia di giudizio
 - Gli studenti svilupperanno la capacità di analizzare criticamente i risultati ottenuti, valutando la coerenza fisica delle soluzioni e la validità dei modelli utilizzati.
- 4. Abilità comunicative
 - Gli studenti saranno in grado di esporre in modo chiaro e rigoroso i concetti fondamentali dell'elettromagnetismo e della relatività, utilizzando una terminologia scientifica appropriata.
- 5. Capacità di apprendere
 - Gli studenti acquisiranno gli strumenti metodologici per approfondire autonomamente i contenuti del corso e affrontare lo studio di discipline affini nell'ambito della fisica classica e moderna.

Contenuti sintetici

Elettrostatica; leggi di Coulomb e di Gauss. Correnti elettriche; legge di Ohm.

Relatività speciale. Magnetostatica: equazione di Biot-Savart, legge di Ampère.

Induzione magnetica; legge di Faraday. Circuiti LRC.

Equazioni di Maxwell. Onde elettromagnetiche. Vettore di Poynting. Notazione relativisticamente covariante per l'elettromagnetismo.

Programma esteso

- Elettrostatica. Legge di Coulomb; campo e potenziale elettrico. Legge di Gauss. Equazione di Poisson e Laplaciano. Energia del campo elettrico. Rotore del campo elettrico. Funzioni armoniche. Conduttori. Condensatori. Calcolo esterno.
- Cariche in moto. Corrente elettrica; legge di Ohm. Circuiti RC.
- Relatività ristretta. Trasformazioni di Lorentz, quadrivettori.
- Magnetostatica. Inevitabilità del campo magnetico; sua divergenza e rotore. Potenziale vettore.
- Induzione magnetica. Circuiti in moto in campo magnetico; legge di Faraday. Induttanza. Energia del campo magnetico. Circuiti LRC. Applicazioni: linee di alta tensione, radio.
- Equazioni di Maxwell. Correnti dipendenti dal tempo. Onde elettromagnetiche. Vettore di Poynting. Notazione relativisticamente covariante per il campo elettromagnetico e per le equazioni di Maxwell. Calcolo esterno e spaziotempo.

Prerequisiti

Fisica I, Analisi I, Analisi II.

Modalità didattica

24 lezioni da 2 ore ciascuna, in modalità erogativa in presenza (6CFU). 12 esercitazioni da 2 ore ciascuna, in modalità erogativa in presenza (2CFU). Lingua italiana.

Materiale didattico

Dispense disponibili presso https://www.dropbox.com/s/s2kvegmy9t0xc5t/EM.pdf?dl=0

D. J. Griffiths, Introduction to electrodynamics. Prentice Hall, 1999.

E. M. Purcell and D. J. Morin, Electricity and magnetism. Cambridge University Press, 2013.

Periodo di erogazione dell'insegnamento

primo semestre.

Modalità di verifica del profitto e valutazione

Esame scritto. Quattro esercizi, tre ore.

È possibile svolgere lo scritto in due compiti parziali. Ciascuno di essi consisterà di tre esercizi, in due ore. Sia per il compito scritto ordinario che per i compiti parziali sarà valutata soprattutto la correttezza del ragionamento e dell'impostazione.

Su richiesta, l'esame può essere sostenuto in lingua inglese.

Orario di ricevimento

su appuntamento.

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ