

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Statistica III

2526-3-E4101B035

Obiettivi formativi

Il corso si propone di ampliare e consolidare le conoscenze sui **modelli statistici** introdotte in Analisi Statistica Multivariata, offrendo una trattazione sistematica dei **modelli lineari generalizzati** (GLMs). In particolare, gli obiettivi formativi includono:

- i. fornire una comprensione avanzata della teoria e delle proprietà dei GLMs;
- ii. introdurre le principali tecniche per l'analisi di dati con distribuzioni non gaussiane (es. binomiale, Poisson);
- iii. applicare i modelli mediante il software R attraverso esercitazioni pratiche e laboratori;
- iv. discutere problematiche reali quali la errata specificazione del modello, l'inferenza basata sulla verosimiglianza e l'uso delle quasi-verosimiglianze.

Il corso contribuisce al raggiungimento degli obiettivi formativi nell'area di apprendimento del CdS: "**Statistica**". In particolare, fornisce le conoscenze e competenze per individuare e implementare opportuni modelli statistico-probabilistici e trarre le appropriate conclusioni inferenziali.

Contenuti sintetici

Statistica III è un corso monografico sui modelli lineari generalizzati (*Generalized Linear Models*, GLMs). Il programma dettagliato è disponibile nella pagina web del corso. Gli argomenti principali sono:

- Modelli lineari: complementi (recap, errata specificazione, robustezza)
- Modelli lineari generalizzati (teoria e metodi)
- Modelli notevoli (regressione binaria e binomiale, regressione di Poisson)
- Quasi-verosimiglianza.

Programma esteso

• Modelli lineari ed errata specificazione

- o Il modello lineare: ripasso e notazione
- Robustezza dello stimatore ai minimi quadrati
- Stimatore sandwich della varianza
- Minimi quadrati pesati
- o Trasformazione di Box-Cox, trasformazioni che stabilizzano la varianza

• Modelli lineari generalizzati (GLM)

- o Famiglia di dispersione esponenziale
- o Inferenza basata sulla verosimiglianza: stima e verifica d'ipotesi
- · Algoritmo IRLS: minimi quadrati pesati ed iterati
- o Devianza, diagnostica, analisi dei residui
- · Tecniche di selezione del modello
- Implementazione in R

• Modelli notevoli

- Regression per dati binari e regressione binomiale
- o Regressione di Poisson per dati di conteggio

· Quasi-verosimiglianze

- · Ipotesi al second'ordine
- o Equazioni di stima non distorte
- o Funzione di quasi-verosimiglianza
- Sovradispersione

Prerequisiti

Questo è un corso di livello triennale, ma ci sono alcuni prerequisiti: si assum siano già acquisite conoscenze solide dei seguenti argomenti:

- Regressione lineare semplice e statistica descrittiva, ad esempio da Statistica I;
- Statistica inferenziale, ad esempio da Statistica II;
- Modelli lineari, ad esempio da Analisi Statistica Multivariata e Econometria;
- Software R, ad esempio da Analisi Statistica Multivariata.

Metodi didattici

Le lezioni si svolgono sia in aula che in laboratorio, integrando aspetti di carattere teorico con quelli praticoapplicativi di analisi dei dati e di programmazione in R. Le 47 ore di didattica saranno così suddivise:

- 35 ore di lezione svolte in modalità erogativa in presenza;
- 12 ore di attività di laboratorio.

Modalità di verifica dell'apprendimento

La modalità di verifica si basa su una prova scritta eseguita in laboratorio ed una prova orale (facoltativa).

Nella prova scritta sono previste due sezioni: una costituita da **domande teoriche** che hanno l'obiettivo di verificare l'acquisizione dei concetti e della formalizzazione necessari per impostare correttamente un modello statistico; la seconda sezione richiede **l'analisi di un data set tramite software R**. Il voto finale della prova scritta è determinato dalla media dei voti riportati nelle due sezioni. Qualora lo studente (o il docente) richiedano la prova orale, il voto finale è la media dei due voti riportati nelle prove scritta ed orale, altrimenti coincide con l'esito della prova scritta.

Durante la prova non è ammesso l'uso di testi o altro materiale con l'esclusione dei codici che verranno messi a disposizione dal docente all'inizio della prova. Durante la prova non è ammesso l'uso del cellulare.

Testi di riferimento

Riferimenti principali (in italiano)

- Salvan, A., Sartori, N. and L. Pace. 2020. *Modelli Lineari Generalizzati*. Springer.
- Azzalini, A. 2008. Inferenza Statistica: Una Presentazione Basata sul Concetto di Verosimiglianza. Springer

Approfondimenti (in Inglese)

- Agresti, A. 2015. Foundations of Linear and Generalized Linear Models. Wiley.
- McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. Second Edition. Springer.

Ulteriore materiale didattico verrà messo a disposizione nella pagina web del corso.

Periodo di erogazione dell'insegnamento

Il Corso viene erogato nel primo periodo del primo semestre dell'Anno Accademico.

Lingua di insegnamento

Italiano

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ